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ABSTRACT
Mobile phone services based on the location of a user have
increased in popularity and importance, particularly with
the proliferation of feature-rich smartphones. One major
obstacle to the widespread use of location-based services is
the limited battery life of these mobile devices and the high
power costs of many existing approaches.

We demonstrate the effectiveness of a localization strat-
egy that performs full localization only when it detects a
user has finished moving. We characterize the power use of
a smartphone, then verify our strategy using models of long-
term walk behavior, recorded data, and device implementa-
tion. For the same sample period, our movement-informed
strategy reduces power consumption compared to existing
approaches by more than 80% with an impact on accuracy
of less than 5%. This difference can help achieve the goal of
near-continuous localization on mobile devices.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscella-
neous; C.3 [Special-Purpose and Application-Based
Systems]

General Terms
Design, Experimentation, Measurement

Keywords
Localization, mobility, power-efficiency, smartphone, exper-
imental evaluation, accelerometer

1. INTRODUCTION
The continued spread of mobile and ubiquitous comput-

ing has brought with it a desire to determine the location
of portable devices and their users. Using the contextual
information provided by location offers the possibility of co-
ordinating the behavior of devices or their environments.
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Location-based services, which include asset tracking and
routing [8], person tracking [23], phone behavior modifica-
tion [24], and advertising [16], constitute a large and growing
market [19].

One particular focus of localization work is in indoor envi-
ronments, where many traditional location sources like GPS
and cellular networks have poor coverage or are unavailable
[11]. To overcome these obstacles and provide high precision
indoors, systems have emerged based on radio frequency ID
(RFID) tags, infrared transceivers, custom radio systems,
and 802.11 WLAN infrastructure [20]. Among these tech-
nologies, positioning based on 802.11 is an attractive solu-
tion and often offers the lowest setup cost: many facilities
are already equipped with access points, 802.11 devices are
an inexpensive commodity, and many network users already
use the platform.

A number of obstacles lie in the path of effective WLAN
positioning, including system accuracy, training or site sur-
veys, calibration, coverage, and the observance of users’ pri-
vacy [18]. One design goal that has not received much at-
tention is the device power consumption of a localization
system. Energy efficiency is key for mobile platforms, which
typically have highly constrained battery resources and a
need or desire to operate independently for extended pe-
riods. In particular, power conservation is an increasingly
valuable aspect for recent feature-rich smartphones, [7] for
which many localization applications are designed.

Here, we propose a method for WLAN localization that is
supplemented with accelerometer data to localize only when
a user moves, thereby reducing power consumption. Since
this sensor requires much less power than an 802.11 radio
and its associated computational work, the system provides
the same quality of location data (provided a sufficiently
accurate movement-detection metric) for a longer time.

2. RELATED WORK
Indoor localization is a well-studied problem in the liter-

ature. Early localization systems such as the Active Badge
(Want et al [25]) used custom hardware to detect wearable
devices, and many frameworks today use specialized tags
[8, 23]. Bahl et al, in developing RADAR, were among
the first to demonstrate the possibility of using 802.11 net-
works to provide localization based on triangulation using
the received signal strength indicator (RSSI) [2], and today
WLAN information is even used commercially by providers
like Skyhook Wireless [22].

Existing research efforts have often observed that the bat-



tery life of mobile devices that localize regularly is poor;
Hightower et al find that a battery life of 10 hours is “less
than desirable” [12]. Work on consumer mobile devices has
been more severely limited by power usage. For example,
PlaceSense (while not focusing on battery life) drained the
battery of a smartphone within 4-5 hours [15].

Noting the energy conservation needs of localization ap-
plications, a number of approaches have developed to pro-
duce lower power consumption. Many aim to predict the
user’s mobility: the velocity history of a device can serve
as a heuristic to inform sampling frequency. Xu et al simu-
late such a strategy, and observe a tradeoff between missing
changes in location and energy conservation for any such
scheme [27]. Chen et al observe the variety of efforts to re-
duce the power consumption of hardware on mobile phones,
and instead focus on a software-based approach using access
point clustering to reduce the computational and communi-
cation cost of localization [6].

From the sensor side of our approach, accelerometers have
been used in localization applications to be the sole provider
of data or augment the information provided to a localiza-
tion service. Since many modern smartphones have a variety
of built-in sensors, typically including an accelerometer, it is
attractive to use the sensor either passively (i.e. to sense the
environment) or actively (i.e. to determine the response to
vibration). Woodman and Harle use accelerometers as part
of an inertial measurement unit and exemplify the dead-
reckoning approach to positioning [26], whereas Surround-
Sense [1] proposes using accelerometers in conjunction with
light and sound information to create a location fingerprint.

Most similar to our work is the approach taken by You
et al [28], which focuses on using accelerometer data to es-
timate the mobility of a user. Much like our approach, the
authors use an accelerometer to help determine when lo-
calization should occur. However, the approach adapts its
sample period to expected movement, which risks “noncon-
formance” due to missed samples. We aim to develop a
strategy that only misses localization when movement mis-
classification occurs. Additionally, whereas You et al use
802.15.4-based MICAz sensor nodes and custom transmit-
ters, we are interested in the impact on consumer WLAN
devices such as commercially-available smartphones.

3. LOCALIZATION STRATEGY
Our goal in creating a localization strategy involves meet-

ing multiple requirements. Our goals are fourfold:

3.1 Goals

1. Reduces the power consumption of localization: This is
the primary goal of our work.

2. Runs on consumer smartphones: We aim to develop
a strategy that can be applied to popular, functioning
WLAN localization systems like those described in [22]
and [4].

3. Works with existing localization frameworks: We would
like to use an approach that augments existing WLAN
services, so that increasing energy efficiency only in-
volves modification of client-side software. For ex-
ample, although moving location computation to the
client reduces energy-consumptive communication [6],

it requires system-wide modification and does not scale
well to large environments.

4. Does not introduce “non-conformance” error: In con-
trast to approaches that increase the sample period,
we develop a technique that does not miss movement
due to prediction error.

These requirements inform our design choices. In order to
meet (2) above, we perform our analysis consistently using
the HTC Dream (aka G1) [14], which is a prototypical smart-
phone based on the Android software platform. To satisfy
(3), we consider the system described in [4], which provides
an existing on-campus localization service. Although it is
not currently trained for smartphone localization, it allows
us to produce the precise set of events necessary to localize.

3.2 Strategy
The strategy we develop aims for simplicity: in essence,

we localize when we detect a user has moved to a new lo-
cation. To do so, we poll the accelerometer of a device at a
fixed period to determine whether a user is walking or not.
We only perform a full localization when a user was previ-
ously walking and is no longer walking. This behavior is
summarized in Fig. 1.

Figure 1: System State Diagram. Information about
user movement from the accelerometer mediates
transitions to and from the walking state.

A full localization event for the WLAN framework we use
(represented by“Localizing”) requires information about the
device’s location in signal space and a communication to
map to physical space. In detail, a full localization com-
prises:

• Waking the device’s WLAN radio

• Initiating a scan for nearby access points and waiting
for it to complete

• Assembling a list of the RSSI and identifier for each
discovered access point (a “fingerprint”)

• Associating with an access point to establish a WLAN
data connection

• Sending the fingerprint to a server running the local-
ization service over the connection

• Receiving an identifier for a physical location from the
server

We obtain information about user movement by polling the
accelerometer periodically and analyzing the resulting data
for movement events. See Sec. 6.1 for further explanation
of the walk detection process, and Fig. 7 for a depiction of
the alignment of localization with respect to movement.



Although our strategy uses a fixed sample rate to deter-
mine movement, we note that it does not preclude the addi-
tion of other approaches. For example, power savings from
hardware-level WLAN optimization would decrease the cost
of each full localization and the strategy as a whole.

4. POWER PROFILING
An analysis of the power behavior of the strategy outlined

above depends upon an understanding of the energy con-
sumption of localization, accelerometer polling, and move-
ment detection. We describe our approach to studying these
factors here.

4.1 Current Measurement
One way of determining the power profiles of WLAN ac-

cess, accelerometer polling, and device sleep is through di-
rect measurement of the current and voltage delivered by
its battery. Since battery voltage over short timescales is
relatively constant, instantaneous power is simply given by
P (t) = V · I(t).

To measure voltage, we bring the device battery to the
fully-charged state and measure a steady 4.15V across it.
Then, we construct the current measurement arrangement
shown in Fig. 2, in which a 0.1Ω Ohmite 12FR010 current
sense resistor lies between battery and device. We use a
Keithley 2400 single-channel source-measure unit (SMU) as
the sensor labeled “V”. To calibrate for the additional re-
sistance of our arrangement, we use the SMU to perform a
sweep over the voltage range we measure and linearize the
resistance we observe with a small current offset.

Figure 2: Power Measurement Arrangement. Po-
tential difference across the small fixed resistance is
measured by a source-measure unit with data log-
ging capabilities.

To capture power consumption information for each of the
activities we need for localization, we focus on measuring
power for each of the following scenarios:

• Completely Off : Device has been manually shut down

• Sleep: When the device is not in use, it falls back to
a sleep mode during which certain events (like calls or
scheduled wakeups) can bring it back online.

• Screen On: The screen consumes a great deal of power,
and since our test for CPU usage requires the screen to
be on, this value serves as a baseline to subtract from
“Heavy CPU”

• Heavy CPU : We produce full CPU usage by running
a compute-intensive task on the device.

• Heavy WLAN : We attempt to determine WLAN radio
power consumption by using the radio to continuously
transmit and receive HTTP requests for email.

• Accelerometer : We write an application that performs
the intermittent accelerometer polling required for move-
ment detection and measure its consumption.

Table 1 summarizes our findings and compares them with
rough estimates of their relative values. These estimates are
obtained from a resource in the Android OS source code
that provides values for screen, Bluetooth, WLAN, CPU,
DSP, cell radio, and GPS power consumption for a generic
device [10]. Many of our test conditions are best represented
by a combination of these values; for example, the “Heavy
CPU”task is performed at full screen brightness (screen.full)
and places a full load on the CPU (cpu.full). Our measure-
ment setup creates an additional load, which is reflected by
a small measured power consumption even when the phone
is completely off.

Measured Scaled / Unscaled [type]
Activity (mW) (unspecified power units)
Completely Off 4.18 4.18 / 0

[none]
Sleep 8.63 8.43 / 1.6

[cpu.idle]
Screen On 317 311 / 116

[cpu.idle+screen.full]
Heavy CPU 799 677 / 254

[cpu.full+screen.full]
Heavy WLAN 754 799 / 300

[cpu.normal+wifi.active]
Accelerometer 321 269 / 100

[cpu.normal]

Table 1: Power Measurements. The measure-
ments we obtain for localization-specific behaviors
have similar relative values to rough estimates from
power data for a generic device. For comparison,
we produce the “Scaled” values by scaling the range
of the unscaled Android power profile data to the
power values we measure. These unscaled data are
generated from combinations of CPU, WLAN, and
screen power consumption.

The primary observation we make from these results is
that device sleep is very inexpensive in terms of power use:
its consumption is nearly two orders of magnitude smaller
than heavy CPU usage. A device that remains in sleep would
take more than 20 days to completely drain its battery. Ad-
ditionally, polling for movement, which only requires CPU
usage and the minimal power drain of the accelerometer, is
less costly than performing wireless localization — particu-
larly since it also takes less time (see Sec. 6.1).

Although these data confirm the general principle that
polling for movement requires significantly less power than
localization, a more specific analysis is necessary for the
power consumption of WLAN scanning and access. Unlike
accelerometer readings, which have a fairly constant power
use, the WLAN radio has multiple levels of power usage,
which depend upon the details of establishing a connection
and transmitting data [3]. As shown in Fig. 3, we observe
these variations in power use when obtaining a trace from



our test setup for a single WLAN data request. This nonuni-
formity motivates our desire to measure average-case WLAN
energy consumption for localization with a rundown analy-
sis.
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Figure 3: Variable WLAN Power Consumption.
WLAN access and scanning has multiple power
states, three of which are visible in this power trace
of a single HTTP GET. Voltage is recorded every
0.073s.

We use the current measurements from Table 1 to confirm
the measurements we make in the next section and to inform
our choice of additional infrequent scanning to our strategy
(see Sec. 7.2). Our measurements of device sleep power es-
tablish the value we use for inter-event power consumption.

4.2 Rundown Analysis
To obtain a more comprehensive portrait of power con-

sumption, we collect information on the time required to
drain the device’s battery for localization (WLAN scanning
and data transmission) and movement sensing. Although
this process takes much longer and is less precise than cur-
rent measurement, it adds average-case information about
localization that we could not otherwise obtain. Our pri-
mary goal in performing this alternate analysis is to deter-
mine the relative cost of accelerometer polling and WLAN
localization, which complements the relationship to sleep
and CPU cost obtained above.

A key requirement of rundown analysis is a battery sensor
that is consistent and accurate, though not necessarily pre-
cise. Fortunately, the HTC Dream device we use exposes a
hardware battery sensor to the Android API that can meet
these requirements with minimal compensation. This API
reports a percentage of battery charge to user code.

To test the power characteristics of movement sensing and
localization, we develop an Android application that per-
formed the same duties as the final strategy, but that only
performs one or the other activity repeatedly. Based upon
the measurements in Sec. 4.1, we focus on the per-event en-
ergy expenditure of accelerometer and WLAN activity, since
device sleep is a constant contributor that only depends on
inter-event time.

Fig. 4 illustrates traces for three rundown trials at the
same event rate — two for WLAN scanning to demonstrate
the correspondence between repeated measurements, and
one for WLAN localization. The battery sensor itself has
a nonlinear sensed-battery versus time characteristic for a
constant power draw. To compensate for this nonlinear-
ity, we average all of the rundown trials that use constant
power to find a aggregate battery consumption curve. We

then compute the numerical inverse of this curve and use it
as a lookup table for battery readings from the device. In
essence, we find a discrete function that maps from average
measured battery reading to a linear profile.
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Pure WLAN Scanning
Pure WLAN Localization

Figure 4: Sample Battery Rundown. Battery drain
traces are shown for localization and WLAN scan-
ning, both at 0.05Hz. Though inexact, there is a
clear correspondence between traces from the same
activity (as shown here, Pure WLAN Scanning).
Additionally, state of charge vs time is sufficiently
linear to be useful.

The rundown analysis indicates that the mapped battery
measurements, while not perfectly linear, are sufficiently
consistent for use in measuring state of charge. These mea-
surements, in conjunction with the data from Table 1, form
a basis for evaluating our localization strategy.

5. SIMULATION
To analyze the power and accuracy characteristics of our

strategy under a variety of conditions, we simulate its long-
term power consumption. The empirical data gathered from
the current measurement and rundown profiles of the phone
enables us to perform this simulation. Each time full WLAN
localization, WLAN scanning, or movement sensing occurs,
the simulation computes power cost as:

Cost =
t− tlast

TimeToSleepDrain
+ EventCost

This model of battery consumption uses a TimeToSleepDrain
that would be required to fully drain the battery accord-
ing to the current measurements in Table 1 and an average
EventCost taken from the additional data in rundown trials.

We verify that the simulation is an accurate model by
running it for the same behaviors we use for rundown analy-
sis. Fig. 5 depicts the concordance of the simulation results
with experimental data. For this particular comparison, we
run the experimental WLAN localization until the battery
is depleted (which causes the device to shut down) and run
accelerometer polling for 29 hours.

6. IMPLEMENTATION
To evaluate the real-world performance of our strategy, we

write an Android application to evaluate the functionality,
accuracy, and power consumption of our localization strat-
egy. It must be able to detect user movement and exhibit
consistent power consumption.
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Sample Measurements
Simulation

Figure 5: Simulation of Power Profile. We run a
simulation of power consumption for two simple be-
haviors: use the WLAN radio to localize at a fixed
rate, and poll for accelerometer data at the same
rate. These simulated results match experimental
results for the same behaviors.

6.1 User Movement
A key requirement of accelerometer-based movement de-

tection is that it reliably captures periods when the user is
moving. Fortunately, considerable work has been done in
detecting gait from accelerometer measurements [9]. One
finding we incorporate is the length of time we should sam-
ple to produce useful information about movement. We opt
to sample for 350ms at the fastest update rate delivered by
the software (approximately 35Hz), although the sorts of ac-
celerometer data we expect vary based upon the location of
the phone on a user’s body.

The details of gait capture are in fact not critical for the
movement detection algorithm, since we do not actually need
to detect gait — rather, we need a boolean output of whether
the user is walking. To meet this requirement, and to reduce
the computation associated with sensing movement, we use a
metric for movement that is the sum of the unbiased variance
of X, Y, and Z acceleration:

Var(m1..mN ) =

∑N
i=1m

2
i − 1

N

(∑N
i=1mi

)2
N − 1

Metric = Var(x1..xN ) + Var(y1..yN ) + Var(z1..zN ) (1)

We compute the sum of squares and the sum in the vari-
ance computation as data collection proceeds, which allows
us to avoid storing measurements. Also notable is that since
Eq. 1 does not depend upon the mean of the accelerations;
the phone can be held in any orientation. To verify that this
metric suffices for movement detection (and as part of the
process of selecting it), we record accelerometer data for a
number of user activities. We log data to a file while holding
the phone, typing on its physical keyboard, interacting with
the screen, resting with the phone in a pocket, and walking.

Fig. 6 contains empirical cumulative distribution func-
tions for walking behaviors and non-walking behaviors. It
is evident that a threshold on this metric can be a good
predictor of walking movement; we choose one that includes

all walk events we obtained. We intentionally choose such
a low threshold since excluding walking events means miss-
ing desired localization events — a situation we do not want
to introduce. The impact of the classification accuracy is
discussed further in Sec. 7.2.
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Figure 6: Movement Detection Threshold. We aggre-
gate all data from non-walking behaviors and walk-
ing, then compute the metric in Eq. 1. A clear
distinction between walking and non-walking events
is discernible, and we choose a cutoff threshold ac-
cordingly.

6.2 Application
We design our application to be minimally dependent upon

other variable power costs. To control the impact of other
intermittent sources of power consumption, we stop tasks
that may run based on other inputs from the environment.

To do so, we disconnect the device from the cellular net-
work by removing its SIM card and remove the association
with an email account that is typically carried by Android
phones. Display power consumption is negligible, since we
write the application as a background service that does not
wake the screen. Also, we stop other background processes
that are not part of the default operating system. These
techniques mimic the use of smartphones in previous stud-
ies [15], and also ensure that our impact on the phone is
limited to a standard user-level Android application.

7. RESULTS
We evaluate our movement-informed localization strategy

on the basis of its long-term accuracy and power savings.
These results are gathered from a simulation that is based
on the data we describe in Sec. 4. To demonstrate that the
strategy functions in practice, we first describe the accuracy
and power savings of an implementation.

7.1 Functionality
While walking around two floors of an indoor space, we

run our application on a phone that is carried in a user’s
pocket. Concurrently on a second mobile device, the user
records “ground truth” data of when he is actually walking.
We sample for movement with a fixed period, and record



when the localization strategy determines that a full local-
ization is necessary.

As shown in Fig. 7, the periods of time that the appli-
cation identifies as “walk” intervals are the same as those
recorded by the user, and differ in time by less than one
sample period. Localization events, as expected, occur on
the transition from walking to not walking. It is clear that
the accelerometer-based strategy uses much less power than
the battery consumption we find from localizing every sam-
ple period. We discuss power usage more thoroughly in Sec.
7.3 below.
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Figure 7: Implementation Logs. Periods of actual
walking (“Ground Truth Walk”) are detected by our
application (“Detected Walk”) and result in local-
ization events on walk to still transitions (“Localiza-
tion”). Power consumption for the accelerometer-
informed strategy (“Sensor-Informed”) is much
lower than näıve localization (“Fixed Rate”) with
the same sample period (once every 20 seconds).

7.2 Accuracy
We define the accuracy of our localization strategy as the

fraction of changes in location that are correctly identified.
To study this metric of system performance, we simulate our
strategy with walking profiles generated from observations
of human walking patterns. Since the accuracy of the under-
lying WLAN localization system is not our focus, we remove
it from our analysis: we do not track the actual location of
the user.

Because a walking to not walking transition triggers a
localization, there are two circumstances that can cause a
missed localization. Either an entire walking period can be
identified as non-walking (which may occur if no movement
sample occurs within the walk), or an entire non-walking
period can be considered a walk. Therefore, for our purposes
of accuracy analysis, a basic long-term portrait of a human
activity profile consists of the distribution of walk durations
and the durations between walks (sedentary periods).

Fortunately, recent work by Chastin and Granat in quan-
tification of human walking points indicates that the seden-
tary periods between walks are well modeled by a power
law distribution [5]. The authors study walking patterns of
individuals who are active, sedentary, and of limited mobil-
ity. We use their model for healthy active adults as a worst
case for missing a span of non-walk periods, and we sam-
ple sedentary duration from a Pareto distribution with the
parameters they observe. Notably, the nature of sedentary
time is much less important than walking time, since seden-
tary periods are over an order of magnitude longer than
walking times and error from missing a non-walk requires
missing the entire interval.

Since accuracy is much more sensitive to the length and
distribution of walking periods, we do not use a single profile
but instead analyze accuracy for four diverse distributions
of walk time: constant, uniform, Pareto, and normal. Each
of these distributions has a minimum walk length of con-
sideration Tmin = 6s based on the accuracy of our underly-
ing localization system. We select a duration for each that
matches total walk time to the mean of a typical adult. In
detail, we choose an expected value T for each such that

T · E[WalkingPeriodsPerDay] = E[WalkTimePerDay]

where we obtain WalkingPeriodsPerDay from the distribu-
tion for sedentary periods, and we select WalkTimePerDay
based on a study by Bates et al of weekly walking time for
6626 U.S. adults [17].

Name Sampling Function (sec)
Constant Tmin + T
Uniform Tmin + U(0, 1) · 2T
Pareto Tmin + (U(0, 1))−2/3 · T/3
Normal Tmin + max (N (T, 144))

Table 2: Walk Time Distributions We use multi-
ple models of walking time to assess strategy ac-
curacy. U(a, b) represents a uniform random number
between a and b, and N (µ, σ2) a normally-distributed
random number with mean µ and variance σ2. The
Pareto distribution used for sampling has α = 1.5.

Using this definition of accuracy and the distributions in
Table 2, we consider two primary sources of error: missing
an event due to not sampling, and misclassifying events. We
do not adapt the sampling period since our goal is to not
miss localization due to prediction error. Therefore, any
error due to not sampling will be produced by checking for
movement with a period longer than the shortest walk time.
This shortest period is Tmin+T for the constant distribution
and Tmin for the others shown in Table 2; periods below
this threshold produce no error from a failure to sample
for movement. For other sampling periods, Fig. 8 shows a
simulation of the dependence of accuracy on sampling period



assuming perfect classification. The choice of a low sample
period is necessary to maintain accuracy.
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Figure 8: Impact of Sample Period on Accuracy. The
impact of sample period on localization accuracy as
defined in Sec. 7.2 is shown for the four synthetic
walking patterns shown in Table 2. Though the de-
pendence varies, only short sampling periods pro-
vide high accuracy.

Such short sampling periods are similar to those used in
previous systems. Kim et al [15] sample once every 10 sec-
onds, and Want et al intentionally save power by sampling
once every 15 seconds [25], noting that the period is long
but sufficient for office environments. You et al [28] use an
adaptive sampling period with a non-conformance rate that
is typically 10% to 17%, but still poll for movement as often
as 2-4 seconds.

Given that a short sampling period is necessary for ac-
curacy, we are most interested in the impact of misclassi-
fication. Misclassifying an entire walk is the primary error
introduced by the movement-sensing system, and a signif-
icant impact of classification error on accuracy would run
counter to our goal of not introducing additional error. For-
tunately, two properties of movement sensing cause a small
impact. First, as we observe in Sec. 6.1, a simple metric
can be very accurate in classifying walking/non-walking in-
tervals — the threshold we choose does not misclassify any
walk events in our sample dataset. Even for greater misclas-
sification rates, though, the strategy will often sample again
within a walk. The probability of an incorrect classifica-
tion is then the product of multiple incorrect classifications.
As simulated and illustrated in Fig. 9, the accuracy of the
strategy is robust to more incorrect classification than we
observe in our tests.

One additional accuracy-related concern is the outcome if
a localization is missed and a user does not move for a long
period of time. In this case, the strategy will not relocalize
until another walk event occurs. To avoid this situation, the
system can check the user’s location in signal-space using
a WLAN scan on an infrequent basis when no walking is
detected. Although a single WLAN scan consumes approx-
imately 2.2 times as much power as a movement detection,
it consumes 10 times less than full localization. The com-
bination of infrequent scanning and relatively low per-event
cost produces a low energy impact, as discussed below.
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Figure 9: Impact of Misclassification on Accuracy.
Localization accuracy is not highly dependent upon
walk misclassification in the low range we expe-
rience, even for relatively long sampling periods.
Here, a sampling period of 17.9s is used for each
walk time distribution.

7.3 Power
We evaluate the power consumption of our strategy using

the simulation techniques described in Sec. 5 for the same
distributions of walk and non-walk times used for the ac-
curacy analysis above. To obtain a worst-case scenario for
power consumption, we use a 0% misclassification rate; this
ensures that a maximum number of energy-expensive local-
ization events are performed after performing movement de-
tection. We also include a WLAN scan to localize the phone
in signal space every five minutes to avoid the potential long
periods of incorrect location information introduced by any
missed localizations.

Since the strategy parameter that affects power consump-
tion the most is sample period, we compute power usage as a
function of sample period for each of the distributions in Ta-
ble 2. Our baseline for comparison is full (näıve) localization
with the same period. Fig. 10 presents the reduced power
cost for the movement-sensing assisted strategy as compared
to baseline energy expenditure. For the short sampling pe-
riods of interest, we observe a computed reduction in power
consumption that exceeds 80%. The comparative savings
are reduced for longer sample periods primarily due to the
cost of inter-event phone sleep, which causes a tapering of
device lifetime.

We also investigate the power behavior of our localiza-
tion strategy for a few individual activity profiles to confirm
that our aggregate model for walk times encompasses actual
walks. A few data samples provided by PAL Technologies
[21] serve this purpose well. These profiles are recorded using
a custom device and an algorithm that isolates intervals of
sitting, standing, and walking. For example, Fig. 11 shows
a simulation of power consumption for the walk pattern of a
41-year-old executive. The power savings simulated for the
HTC Dream when using a 20 second sample period (92.8%)
and a 10 second sample period (94.3%) are in line with the
savings predicted by the walk model and shown in Fig. 10.

Data from other smartphones indicate comparable power
savings. We perform rundown profiles of the HTC Magic
(aka MyTouch 3G), generate a battery sensor linearization,
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Figure 10: Power Savings. Power consumption for
our localization strategy is much lower than that for
localization for the same sample period. All distri-
butions for walk time are overlaid for both our strat-
egy (“Movement Informed”) and näıve localization
(“Always Localize”). The light gray vertical bar in-
dicates the sampling period of 17.9s that is used in
Fig. 9.

and conservatively assume that its sleep lifetime is the same
as the HTC Dream we discuss earlier (even though its actual
sleep lifetime is longer) [13]. The simulated power savings
for this device are illustrated in Fig. 10. Our initial profiling
of another smartphone (the Motorola Droid) shows similar
promise for power savings, although further work is needed
to fully characterize the device, in part since its battery
sensor provides a much coarser measurement.

For both the short duration implementation results shown
in Fig. 7 (which show a power savings of 79%, possibly
due to the association costs we discuss in Sec. 8.2), and in
the simulated long-term behavior in Fig. 10 and Fig. 11,
we observe a considerable power savings for our strategy.
These results indicate great promise for movement-informed
localization on consumer smartphones.

7.4 Comparison with Other Methods
Since we focus on improving the battery life of smart-

phones when localizing, the accuracy and power use of other
localization systems on these devices ought to be considered.
Unfortunately, a direct comparison is problematic, since the
goals and requirements of the technologies differ. For ex-
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Figure 11: Example Walk Power Use. We use data
on walk periods to compute the energy expendi-
ture of always localizing (“Always”) and our strategy
(“Informed”) for two different sampling periods. No
events are missed by either sampling period.

ample, GPS-based localization is largely orthogonal to our
goals: although its accuracy can be 1-5m outdoors [20], it
is much less effective indoors, requires a longer time to as-
sociate than WLAN and consumes greater than 50% more
power than WLAN while active [10].

A more comparable localization mechanism on consumer
devices uses the identity of towers on the cellular network.
Typical accuracy for these systems is very low (on the order
of 50-200m). Prototype systems have achieved a resolution
as fine as 2.5m in the best case, but require a dense set of
neighboring cells [20]. Accuracy for WLAN-based systems is
typically much greater: for example, the underlying frame-
work we use is accurate to within 10m for 94.9% of local-
izations [4], and multiple systems with greater complexity
and training are consistently accurate to within less than
3m [18–20]. The relative energy consumption is dependent
upon the type of network used: for a single full localization
requiring 1-2KB of transfer, power consumption based on
the findings of [3] would be 7J for WLAN, 4J for GSM, and
13J for the 3G radios popular in smartphones.

Efforts most closely related the present work show consid-
erable promise but are not directly comparable. For exam-
ple, Chen et al reduce CPU power consumption required for
offline localization, which is unlike our server-based localiza-
tion framework [6]. The work of You et al mentioned earlier
achieves up to a 68.92% reduction in power consumption as
compared to periodic sampling as compared to the greater
than 80% reduction we predict. However, these results are
not directly comparable: the authors concurrently focus on
improving accuracy through predictive sampling. Addition-
ally, both studies use wireless sensor nodes, which have dif-
ferent power characteristics than the smartphones we study.
In this spirit, since our emphasis is on consumer devices and
their users, we focus our comparison on improvement for
their situation in the next section.

7.5 Predicted Benefits
We intentionally study the power consumption of our strat-

egy without other user applications running on the device to
control our experiment. However, actual users of a localiza-
tion service will likely perform other activities like making



calls. Power usage on smartphones in particular is heavily
dependent on activity: as easily drawn from the component
power consumption values in Table 1 and observed by users,
device lifetime can range from less than 10 hours for contin-
uous heavy network and media use to longer than 48 hours
for intermittent general use.

To capture the expected impact of user activity, we pre-
dict the lifetime of the device by simulating additional power
consumption alongside localization. Since battery life varies
so widely based on activity, we choose a range of expected
battery lifetimes (24-48 hours) for user activity only based
on typical user behavior of charging every day or every other
day. We then find the average power consumption that pro-
duces these lifetimes, and use it as the power use between
localizations in a simulation with a 20s movement detec-
tion period. Clearly, movement detection and user activ-
ity will overlap at times with such a model; however, since
movement detection takes only 350ms of every 20s period
(1.75%), we find that the effect of overlap on lifetime is less
than 4%.

Device Activity Lifetime (hours)
Only Sleep 493
Movement-Informed Localization 130
Always Localize (only WLAN) 8.7
Typical User Activity 24–48
Typical User Activity 20–37
+ Movement-Informed Localization
Always Localize (only WLAN) 6.5–7.5
+ Movement-Informed Localization

Table 3: Predicted Lifetime with Other Activity. Us-
ing movement-informed localization in the presence
of other power consumption remains advantageous.
We use a sample time of 20s for both localization
strategies.

Table 3 summarizes the impact of our movement-informed
localization strategy on device lifetime. Using our strategy
with the 20s sample period used in our studies of power
produces a 130h lifetime in the absence of user activity. It
would allow users to keep to the same charge schedule: for a
one-day original lifetime, it only reduces device lifetime by
4h, and reduces it by 11h for a 48h original lifetime. This
time window allows for much more usable localization ap-
plications than using existing WLAN-only localization ap-
proaches: a 6.5–7.5h lifetime demands multiple charges per
day. Therefore, we find that users of our target devices
(smartphones) stand to benefit from localization services
built around movement-informed localization while feeling
little impact on their usage patterns. Some optimizations
and study, detailed below, could produce even further ben-
efits.

8. LIMITATIONS AND FUTURE WORK
Although the power savings afforded by movement detec-

tion are considerable for minimal cost in accuracy, there are
considerations that limit its use. Perhaps the most signif-
icant is the potential for a long span of incorrect location
information due to a missed localization. Intermittent scan-
ning, as described in Sec. 7.2, can ameliorate this concern,
but hardware to perform continuous sensing would improve
both power use and accuracy.

8.1 Continuous Sensing Hardware
One of the current limitations of performing movement

sensing on smartphones like the one we use is the necessity
of waking the CPU to obtain data from the accelerometer.
This property causes power usage that, while not as large as
localization, is still much larger than device sleep. Addition-
ally, the need to poll the accelerometer makes it infeasible
to perform continuous movement sensing. In contrast, many
sensor nodes have the capability to wake only when a given
sensor’s measurement exceeds a threshold value [8].

Small changes to smartphone hardware could allow for
wake-on-accelerometer behavior, thereby permitting lower
power use and higher accuracy through continuous sensing.
For example, the smartphone we study contains a Qual-
comm PM7500 power management IC that manages wak-
ing the CPU. It contains its own housekeeping ADC, which
could be used in place of the ADCs on the CPU for low-
power sensing and triggering the CPU to wake if necessary.

8.2 WLAN Association Cost
We observed a power savings for an actual implementation

that was slightly lower than predicted from measurements
and simulation. The likely source of this cost is the ad-
ditional energy expenditure needed to associate with a new
WLAN access point. When walking, we model actual behav-
ior by walking between different locations, which had differ-
ent access points that require authentication. Future work
could reduce this reassociation cost — perhaps by main-
taining a unauthenticated network limited to localization or
performing improved caching of connection information at
the session layer.

8.3 Integration with Outdoor Localization
Our focus in this work is on saving power for WLAN lo-

calization. Similar movement-sensing approaches are also
applicable in outdoor environments, where WLAN localiza-
tion is often not possible or not preferable. The power cost
of common outdoor localization schemes based on GPS and
cellular signals is also high, and could benefit from sensor-
informed approaches like the one we develop here. Extend-
ing the present work to a comprehensive power study and
localization system that includes multiple techniques could
make it suitable for deployment among a much broader au-
dience. Such a deployment would provide the opportunity
to study implementation power behavior on phones that un-
dergo typical use. This work would help address the need for
deeper study of the accuracy and power use of the strategy
under population workloads.

9. CONCLUSION
We describe an approach to WLAN localization that aims

to reduce power consumption. By only localizing when a
user has moved, our strategy leverages less energy-expensive
sensors to achieve the same sample period as fixed rate local-
ization with a much lower power cost. Our target platform is
the recent collection of consumer smartphones, which pro-
vide WLAN radios and an accelerometer that we use for
movement sensing.

Our study of the power consumption of movement sens-
ing and localization on a smartphone allows us to simulate
our strategy for a number of movement profiles. We show
that for three cases — long-term models of human walk-
ing, recorded activity profiles, and actual implementation —



movement-informed localization reduces power consumption
drastically with only a small impact on accuracy. We also
show that our methodology can be successfully combined
with normal phone user patterns with acceptable power im-
pact and minimal impact on users’ charge schedules. Small
changes at the hardware level and expansion to other forms
of localization could produce even further improvements for
this strategy, and lead to power saving for location-based
services and their users.
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