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Abstract 
Typical NASA applications have image processing tasks that require high performance 
implementations.  Interest in targeting FPGAs for high performance hardware-based 
implementations is growing, fueled by research that shows orders of magnitude speedups 
are possible within this domain.  This thesis presents our work in utilizing adaptive 
computing techniques to accelerate a NASA image processing application.  In our hand 
mapping of a typical algorithm, we were able to obtain well over an order of magnitude 
speedup over conventional software-only techniques with commercial off-the-shelf 
hardware.  We discuss this work in the context of the MATCH Project—an automatic 
compilation system that will allow users to compile MATLAB codes directly to FPGAs.  
Our work represents research involving real-world algorithms taken from NASA 
applications.  By researching and implementing these algorithms by hand, we can 
develop optimization knowledge to significantly improve the results of the MATCH 
compiler. 

 
1 Introduction 
In 1991 NASA created the Earth Science Enterprise initiative to study the Earth as a scientific system.  The 
centerpiece of this enterprise is the Earth Observing System (EOS), which plans to launch its first satellite, 
Terra, before the turn of the century.  With the launch of Terra, ground processing systems will have to 
process more data than ever before.  In just six months of operation, Terra is expected to produce more data 
than NASA has collected since its inception [7].  It is therefore clear that the Terra satellite will pose an 
interesting processing dilemma. 

As a complement to the Terra satellite, NASA has established the EOS Data and Information System 
(EOSDIS).  Utilizing Distributed Active Archive Centers (DAACs), EOSDIS aims to provide a means to 
process, archive, and distribute science and engineering data with conventional high-performance parallel-
processing systems. 

Our work, combined with the efforts of others, strives to augment the ground-based processing centers 
using adaptive computing technologies such as workstations equipped with FPGA co-processors.  
Increasingly, Field-Programmable Gate Arrays (FPGAs) are being used as an implementation medium 
spanning the development space between general-purpose processors and custom ASICs.  FPGAs represent 
a relative middle ground, where development time is high compared to software, costs are low compared to 
ASICs (in low volume), and performance is higher than software, and sometimes approaches custom ASIC 
speeds. 

A trio of factors motivates the use of adaptive computing in this domain over custom ASICs: speed, 
adaptability, and cost.  The current trend in satellites is to have more than one instrument downlinking data, 
which leads to instrument-dependent processing.  These processing “streams” involve many different 
algorithms producing many different “data products”.  Due to factors such as instrument calibration error, 
decay, damage, and incorrect pre-flight assumptions, these algorithms often change during the lifetime of 
the instrument.  Thus, while a custom ASIC would most likely give better performance than an FPGA 
solution, it would be far more costly in terms of time and money due to an ASIC’s cost, relative 
inflexibility, and long development cycle. 

This thesis describes our work in hand mapping a typical NASA image processing algorithm to an adaptive 
computing engine and demonstrates a significant speedup versus standard software-only execution.  This 
work drives the development of our MATCH compiler, described in detail in later sections, by serving as 
both a benchmark for performance and a learning tool for incorporation of optimization techniques. 

2 Field-Programmable Gate Arrays (FPGAs) 
The typical computer sold today—be it a personal computer, workstation, or supercomputer—is based 
upon a general-purpose processor model.  At the core of this model is a general-purpose processor (GPP) 
that responds to a fixed, well-defined instruction set.  This instruction set directs the GPP to perform 
arithmetic, logic, branching, and data transfer functions.  The nature of a GPP is that it implements all basic 
arithmetic and logic functions in order to support any basic computation.  While this architecture provides 
great flexibility, it comes at a price: performance. 
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The performance loss can be attributed to the GPP’s lack of hardware-optimized structures for specific 
tasks.  Without these specialized structures there will invariably be computations that will be sub-optimal in 
performance.  For example, if a GPP did not implement a multiply in hardware, it would be forced to 
utilize an adder to perform the multiplication.  For a word-sized multiply (ie. 32-bits), this method would 
require at least 32 additions and possibly 32 accumulations.  In a single-cycle GPP, this would require 
somewhere between 32 and 64 cycles.  On the other hand, if the GPP supported multiplication directly in 
hardware, it would complete the multiplication in a single cycle with perhaps a 4 cycle latency due to 
pipeline issues.  Obviously, this is a great improvement.  At this low level of computation, GPPs usually 
incorporate multipliers and dividers, as these functions are used by most applications.  

Unfortunately, it is impossible for designers of GPPs to include hardware structures for every possible type 
of computation.  While the current trend of computing power follows Moore’s Law of growth, for some 
applications there will never be enough computing power within a GPP.  For these applications, designers 
have oftentimes turned to custom ASICs, in the form of co-processors, to offload work from the GPP.  
Common examples are floating-point, audio, and graphics co-processors.  While co-processors 
undoubtedly offer greater performance in most cases, they do so by limiting their optimizations to specific 
operations.  Thus, a typical floating-point co-processor can only perform floating-point arithmetic and 
trigonometric math functions; an audio co-processor performs signal decoding, and 3D spatialization; a 
graphics co-processor typically performs coordinate transformations, buffering, scaling, and 
texture/lighting mapping.  All of these co-processors add functionality and performance to augment a GPP, 
but none are generalized to perform arbitrary tasks. 

This inherent inflexibility makes the custom ASIC co-processor viable only for markets that have a high 
enough volume to defray the long development cycle and high costs of custom ASIC design.  Arithmetic, 
audio, and graphics co-processors fall into this high-volume category.  Unfortunately, for one-off and low-
volume application accelerators, ASICs are not economically viable. 

A solution that is growing in popularity is the Field-Programmable Gate Array, or FPGA.  The FPGA is, as 
its name implies, a programmable gate array.  Similar to PAL/PLA structures, the typical FPGA is an array 
of logic-blocks in a sea of interconnections, commonly referred to as an island-style FPGA.  These logic-
blocks, dependent on the specific implementation, can typically implement functions as fine-grained as 
two-input Boolean functions and 3-input multiplexers, or as coarse-grained as full-adders and small 
ROM/RAM arrays.  Not only are these logic-blocks user-programmable, the routing mesh that connects 
these logic blocks together is also user-programmable. 

With this architecture a designer can implement—given enough FPGA resources—any arbitrary 
computation.  Additionally, most types of FPGAs are re-configurable, allowing the designer to utilize a 
single FPGA to perform a variety of tasks at different times.  This is the essence of adaptive/reconfigurable 
computing. 

3 MATCH 
The one aspect of FPGAs impeding more widespread, innovative use, is the lack of quality, easy-to-use 
development tools.  As attractive as the FPGA is as an implementation technology, the complexity of 
actually mapping to these devices often restricts their use to niche applications.  These niche applications 
tend to be speed-critical applications that either do not have the volume to justify the ASIC design costs, or 
require some other unique characteristic of FPGAs, such as low power consumption, reconfigurability, or 
fault tolerance.  Using current tools, developers must create by hand implementations in a hardware 
description language such as VHDL or Verilog, and map them to the target devices.  Issues such as inter-
chip communication and algorithm partitioning are also largely a manual process. 

Many signal processing application developers, especially scientists, are unwilling to master the 
complexities of hardware description languages such as VHDL and Verilog.  Unfortunately, these are the 
same scientists that would benefit the most from FPGA technologies.  Within the domains of signal and 
image processing, though, high-level languages such as MATLAB have become popular in algorithm 
prototyping.  Therefore a MATLAB compiler that can target hardware automatically would be invaluable 
as a development tool.  This is the basis for the development of our MATCH compiler. 
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The objective of the MATCH (MATlab Compiler for Heterogeneous computing systems) compiler project 
is to make it easier to develop efficient codes for heterogeneous computing systems. Towards this end we 
are implementing and evaluating an experimental prototype of a software system that will take MATLAB 
descriptions of various applications and automatically map them onto a heterogeneous computing system.  
This system, dubbed the MATCH testbed, consists of embedded processors, digital signal processors and 
field-programmable gate arrays built from commercial off-the-shelf components.  More detailed 
information can be found in sections 6.2 and 6.4.1.  

The basic compiler approach begins with parsing MATLAB code into an intermediate representation 
known as an Abstract Syntax Tree (AST).  From this, we build a data and control dependence graph from 
which we can identify scopes for varying granularities of parallelism.  This is accomplished by repeatedly 
partitioning the AST into one or more sub-trees.  Nodes in the resultant AST that map to predefined library 
functions map directly to their respective targets and any remaining procedural code is considered user-
defined procedures.  A controlling thread is automatically generated for the system controller, typically a 
general-purpose processor.  This controlling thread makes calls to the functions that have been mapped to 
the processing elements in the order defined by the data and control dependency graphs.  Any remaining 
user defined procedures are automatically generated from the AST and implemented on an appropriate 
processing medium.  The appropriate target for this generated code is determined by the scheduling system 
[8]. 

Currently, our compiler is capable of compiling MATLAB code to any of the three targets (DSP, FPGA, 
and embedded processor) as instructed by user-level directives in the MATLAB code.  The compiler uses 
exclusively library calls to cover the AST.  The MATCH group has developed library implementations of 
such common functions as matrix multiplication, FFT, and IIR/FIR filters for FPGA, DSP, and embedded 
targets.  Currently in development are MATLAB type inferencing and scalarization techniques to allow 
automatic generation of C+MPI codes and Register Transfer Level (RTL) VHDL which will be used to 
map user-defined procedures (non-library functions) to any of the resources in our MATCH testbed.  
Integration of our scheduling system, Symphany [8], into the compiler framework to allow automatic 
scheduling and resource allocation without the need for user directives is also ongoing. 

This MATLAB-to-FPGA/DSP compiler will allow developers to achieve high performance without 
requiring extensive hardware expertise.  Unsophisticated users can quickly develop prototype algorithms 
and test them in an easy-to-master interpreted environment, fostering fast exploration of different 
algorithms. 

4 Motivation 
The idea of using hardware to accelerate an application is not a new one, nor is it the path of least 
resistance as compared to more conventional methods, such as increasing the computing power dedicated 
to a specific task.  This is typically accomplished by increasing the clock speed of a single processing 
element or by increasing the number of processing elements and implementing a parallel version of the 
algorithm.  Unfortunately, neither of these methods is particularly cost-effective and can require either a 
partial or a complete re-write of the code to take advantage of the hardware changes, especially in the case 
of implementing a parallel-processing version of an algorithm.  But the true difficulty resulting from a 
hardware change is in the learning curve the new hardware poses and the subsequent time required to re-
target the code, efficiently and effectively, to the new hardware.  As mentioned earlier, it would be 
necessary for the developer to have an intimate knowledge of both the target hardware and the algorithm 
specifics to implement the algorithm effectively. 

The MATCH compiler is a more cost-effective method, in terms of both real money and time, to improve 
the performance of algorithms.  By allowing users to write high level code (MATLAB), we can abstract the 
hardware details and hardware changes through the use of the compiler.  Additionally, users do not loose 
their investment in current hardware, as much of the hardware targeted by the MATCH compiler is 
available as add-on hardware, functioning as co-processors that complement the host computer.  Finally, 
these add-on components typically cost far less than general-purpose computers, yet deliver equivalent, if 
not better, performance.  

A key factor in determining the success of an automated compilation environment such as the MATCH 
compiler is the quality of the resultant compiled code.  To this end, we believe that applications will drive 

Chang    4



the compiler development.  This is the aspect of the MATCH compiler we are focused upon in this work.  
Good driver applications benefit compiler development in many ways, such as: 

• Defining critical functions that need to be supported by the compiler 

• Providing sample codes that can be used to test the compiler 

• Establishing a performance baseline 

• Discovering performance bottlenecks and possible optimizations 

As NASA scientists are a major potential target for using our MATCH compiler, we have sought out 
typical NASA applications and implemented one on our MATCH test platform.  One of the first circuits we 
have investigated is a multi-spectral image processing task. 

5 Multi-Spectral Image Classification 
In this work, we focus on accelerating a typical multi-spectral image classification application.  The core 
algorithm uses multiple spectrums of instrument observation data to classify each satellite image pixel into 
one of many classes.  In our implementation, these classes consist of terrain types, such as urban, 
agricultural, rangeland, and barren.  In other implementations, these classes could be any significant 
distinguishing attributes present in the underlying dataset.  This technique, generally speaking, transforms 
the multi-spectral image into a form that is more useful for analysis by humans, similar to data compression 
or clustering analysis. 

One proposed scheme to perform this automatic classification is the Probabilistic Neural Network classifier 
as described in [5].  In this scheme, each multi-spectral image pixel vector is compared to a set of “training 
pixels” or “weights” that are known to be representative of a particular class.  The probability that the pixel 
under test belongs to the class under consideration is given by the following formula. 
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Applying the PNN algorithm to a sample of multi-band input data achieves the results shown in Figure 1. 
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Raw Image Data Processed Image
 

Figure 1: Results of processing.  Each color in the right-hand image represents a different 
type of terrain detected. 

6 Implementation 
The complete PNN algorithm was implemented in a wide array of languages and platforms in order to 
accurately gauge the performance of adaptive computing techniques.  The software languages used include 
MATLAB, Java, C, and C+MPI.  Target platforms include single and parallel-processor workstations 
utilizing UltraSPARC, MicroSPARC, MIPS R10000, and HP PA-RISC processors, as well as embedded 
and adaptive computing resources, described in detail below. 

6.1 Software platforms 
The reference platform for the single-processor software versions of the algorithm was an HP Visualize C-
180 workstation running HP-UX 10.20 with 128MB of RAM.  MATLAB, Java, and C versions were 
implemented and timed on this platform. 

There were several platforms to test parallel versions of the algorithm.  These included an eight-processor 
SGI Origin, a 16-node IBM SP2, and a network of four Texas Instruments DSPs.  The SGI Origin utilizes 
195MHz MIPS R10000 processors and has 1GB of main memory.  Each node of the IBM SP2 includes 
128MB of memory and an IBM Power2 processor.  Finally, a Transtech TDM-428 VME board carries four 
60MHz Texas Instruments TMS320C40 with 8MB of local memory per DSP. 

6.2 Hardware platform 
The reference platform for the hardware implementations was the entire MATCH testbed as a unit.  This 
includes a 100MHz FORCE SPARC 5 VME card running Solaris with 64MB of RAM and the Annapolis 
Microsystems WildChild FPGA co-processor.  A more detailed architecture overview is given in section 
6.4.1. 
6.3 Software approaches 

6.3.1 MATLAB (iterative) 
Because of the high-level interpreted nature of MATLAB, this is the simplest and slowest implementation 
of the PNN algorithm.  The MATLAB source code snippet is shown in Figure 2.  This code uses none of 
the optimized vector routines that MATLAB provides.  Instead, it uses an iterative approach, which is 
known to be slow in MATLAB.  On the other hand, the code is short and intuitive to write, making this the 
obvious first-cut at the algorithm definition.  The best use for this approach is to benchmark improvements 
made by other approaches. 

MATLAB has many high-level language constructs and features that make it easier for scientists to 
prototype algorithms, especially when compared to more “traditional” languages, such as C or Fortran.  
Features such as implicit vector and matrix operations, implicit variable type declarations, and automatic 
memory management make it a natural choice for scientists during the development stages of an algorithm.  
Unfortunately, MATLAB is also much slower than its C and Fortran counterparts due to its overhead.  In 
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later sections, we discuss how the MATCH compiler can compile MATLAB codes to reconfigurable 
systems (such as DSPs and FPGAs), thus maintaining the simplicity of MATLAB while achieving higher 
performance. 

for p=1:rows*cols 
   fprintf(1,'Pixel: %d\n',p); 
   % load pixel to process 
   pixel = data( (p-1)*bands+1:p*bands); 
   class_total = zeros(classes,1); 
   class_sum   = zeros(classes,1); 
   % class loop 
   for c=1:classes 
      class_total(c) = 0; 
      class_sum(c) = 0; 
      % weight loop 
      for w=1:bands:pattern_size(c)*bands-bands 
         weight = class(c,w:w+bands-1); 
         class_sum(c) = exp( -(k2(c)*sum( (pixel-weight').^2 ))) + class_sum(c); 
      end 
      class_total(c) = class_sum(c) * k1(c); 
   end 
   results(p) = find( class_total == max( class_total ) )-1; 
end 

Figure 2: Matlab (iterative) code 

As can be seen from the code snippet above, the core of the PNN algorithm is very simple and consists 
primarily of three nested loops.  Starting with the outermost loop, which loops through all the pixels in the 
input image, we select a pixel and prepare to compare it to all the classes.  The middle loop selects which 
class of weights we are comparing the pixel under test to.  Finally, the calculations are carried out in the 
innermost loop, which iterates over all the weights in the particular class under consideration.  There is one 
implicit vector computation in line 14 (pixel-weight’) where an element-by-element subtraction is 
performed between the pixel under test and the weight under consideration.  These vector elements 
represent the different spectral bands within both the input data and the weight data.  In our case four 
different bands are represented by each pixel and weight vector. 

Finally, the last line of computation selects the maximum weight generated by the weighting function in the 
innermost loop and assigns it to the result vector.  This represents the class with the closest match to the 
pixel under test. 

6.3.2 MATLAB (vectorized) 
To gain more performance, the iterative MATLAB code in Figure 2 was rewritten to take advantage of the 
vectorized math functions in MATLAB.  The input data was reshaped to take advantage of vector addition 
in the core loop of the routine.  The resultant code is shown in Figure 3. 

% reshape data 
weights = reshape(class',bands,pattern_size(1),classes); 
for p=1:rows*cols 
   % load pixel to process 
   pixel = data( (p-1)*bands+1:p*bands); 
   % reshape pixel 
   pixels = reshape(pixel(:,ones(1,patterns)),bands,pattern_size(1),classes); 
   % do calculation 
   vec_res = k1(1).*sum(exp( -(k2(1).*sum((weights-pixels).^2)) )); 
   vec_ans = find(vec_res==max(vec_res))-1; 
   results(p) = vec_ans; 
end 

Figure 3: Matlab (vectorized) code 

MATLAB has optimized functions that allow us to trade memory for speed in many cases.  In this instance, 
we reshape the pixel under test vector, pixel (four elements per pixel in our dataset), to match the size of 
the weights vector (800 elements per class in our dataset).  Then, we can eliminate the innermost loop 
from Figure 2 and use vectorized subtraction as in line 9 above.  As the results show (see section 7.2), this 
vectorization greatly increases the performance of the MATLAB implementation. 
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6.3.3 Java and C 
A Java version of the algorithm was adapted from the source code used in [6].  Java’s easy to use GUI 
development API (the Abstract Windowing Toolkit) made it the obvious choice to test the software 
approaches by making it simple to visualize the output.  A full listing of the core Java routine can be found 
in Section 11. 

A C version was easily implemented from the base Java code, as the syntax was virtually identical.  The 
listing for the C version appears in Section 12. 

6.3.4 Parallel Implementations 
In order to fully evaluate the performance of hardware, it is important to benchmark our results against 
more traditional forms of application speedup.  A typical method for obtaining speedup in general purpose 
machines is to utilize multiple processors to perform computations in parallel.  The only limits to the 
amount of speedup one can obtain using this method are the available hardware and the inherent 
parallelism within the algorithm. 

Fortunately, the PNN algorithm has a high degree of parallelism.  Specifically, the evaluation of a pixel in 
the PNN algorithm is not dependent on neighboring pixels.  Thus, we can process, in parallel, as many 
pixels from the multi-band input data as our resources will allow.  Furthermore, the parameters to which we 
compare these pixels under test do not change over the course of the computation, requiring little other than 
initial setup communications between processing elements, reducing overall overhead and giving better 
performance. 

Parallel versions of the PNN algorithm were implemented on several different parallel-computing 
platforms, including the SGI Origin, IBM SP2, and a network of Texas Instruments DSPs.  For each of 
these implementations a standardized library of parallel functions, known as the Message Passing Interface 
(MPI), was used.  MPI defines a set of functions that can be used for communication and synchronization 
between processors that exist and operate in separate memory spaces.  Additionally, the SGI Origin 
supports another mode of operation called shared memory parallel processing.  In this instance, all 
processors “see” the same memory space, and therefore do not require explicit messages to share data or 
synchronize. 

6.3.4.1 Shared memory 
The shared memory implementation was the most similar to the single processor version of the code.  The 
core of the code is available in section 13.  The approach taken was to use static block scheduling, breaking 
up the input image data into equal-sized pieces for each of the processors to work on.  Since none of the 
processors would ever try to write to the same location in the result memory, no explicit locking of 
variables needed to occur.  The inherent parallelism of the algorithm made this implementation rather 
straightforward. 

The only machine to support this form of parallel processing, though, was the SGI Origin. 

6.3.4.2 C+MPI: IBM and SGI 
The MPI version on general-purpose processors was more complex than the shared memory version.  As 
mentioned earlier, MPI allows only explicit sharing of data through message passing between processors.  
Thus, one processor, the master, is in charge of all I/O and must distribute all relevant data to the other 
processors. 

The distribution of work was the same as in the shared memory version: static block scheduling by rows.  
As can be seen in the code listing in section 14, the master processor distributes the weights and auxiliary 
data to the other processors through the function MPI_Bcast(…), a single-source broadcast to all 
processors.  The master processor then sends each slave processor its portion of the input image through a 
pair of functions, MPI_Send(…)and MPI_Recv(…). 
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After each processor is finished working on its portion of the input image, it must send its results back to 
the master processor for output to the result file.  This is accomplished again through the send/receive 
function pairs. 

6.3.4.3 C+MPI: DSP 
The final parallel implementation was on a network of four TI DSPs.  Their configuration, not running an 
actual operating system, required the use of a host computer to download data and target code to them to 
operate.  This host computer was a SPARC5 FORCE board, the identical host computer used for the FPGA 
co-processor in following sections.  Thus, there are two listings, one for the DSP code and one for the host 
computer, sections 15 and 16, respectively. 

The host is in charge of I/O and distribution of data to the DSPs, while the DSPs perform the computation.  
A few caveats of note: 

• the MPI implementation had a bug that did not allow transfers between DSPs to exceed 1024 bytes – 
the solution was to iteratively send smaller portions of large datasets 

• RAM available to user programs on the DSPs was limited to about 4MB out of 8MB total 

• memory allocation did not correctly report failure of the malloc() routine 

• failure of memory allocation resulted in board lock-up 

• only two communication channels: host to DSP0 and DSP0 to the three slave DSPs 

• only three MPI functions: send, receive, barrier 

These problems notwithstanding, the implementation was similar to the previous C+MPI versions, again 
utilizing static block scheduling by rows of input pixel data.  The host controller loads all input data and 
sends everything except the pixel data to DSP0, the master DSP.  The host then enters a loop, delivering a 
small enough portion of the input image data to the master DSP per iteration. 

The master DSP then sends everything but the pixel data it received to each of the slave DSPs, and divides 
the pixel data by rows and delivers the appropriate portions to each DSP.  After computation is completed, 
each of the slave DSPs delivers the result to the master DSP, which in turn sends the aggregate result to the 
host controller.  This process iterates until all pixels have been processed. 

6.4 Hardware approaches 

6.4.1 FPGA Co-Processor 
The hardware used was the Annapolis Microsystems WildChild FPGA co-processor [2].  This board 
contains an array of Xilinx FPGAsone “master” Xilinx 4028EX and eight “slave” Xilinx 4010E’s, 
referred to as Processing Elements (PEs)interconnected via a 36-bit crossbar and a 36-bit systolic array.  
PE0 has 1MB of 32-bit SRAM while PEs 1-8 have 512K of 16-bit SRAM each.  The layout is shown in 
Figure 4.  The board is installed into a VME cage along with its host, a FORCE SPARC 5 VME card.  For 
reference, the Xilinx 4028EX and 4010E have 1024 and 400 Configurable Logic Blocks (CLBs), 
respectively.  This, according to [9] is roughly equivalent to 28,000 gates for the 4028EX and 950 gates for 
the 4010E.  This system will be referred to as the “MATCH testbed”. 
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Figure 4: Annapolis Microsystems WildChild(tm) FPGA Co-processor 

 
 
6.4.2 Initial mapping 
The initial hand mapping of the algorithm is shown in Figure 5.   
(Note the coefficients from Equation 1 have been collapsed into two variables for easier reference: 
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Figure 5: Initial FPGA mapping 
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PE % Used 
PE0 5%
PE1 67%
PE2 85%
PE3 82%
PE4 82%

Table 1: FPGA Utilization -- Initial mapping 

The mappings were written in behavioral VHDL and simulated with the Mentor Graphics VHDL simulator.  
The code was synthesized using Synplicity’s Synplify synthesis tool.  Placement and routing was 
accomplished with Xilinx Alliance (M1) tools.  As shown in Figure 5, the computation for Equation 1 is 
spread across five FPGAs. 

The architecture of the WildChild board strongly suggests that PE0 be the master controller for any system 
mapped to the board as PE0 is in control of the FIFOs, several global handshaking signals, and the 
crossbar.  Thus, in our design, PE0 is utilized as the controller and “head” of the computation pipeline.  
PE0 is responsible for synchronizing the other processing elements and beginning and ending the 
computation. 

Pixels to be processed are loaded into the PE0 memory.  When the system comes out of its Reset state 
(such as upon bootup), PE0 waits until it receives handshaking signals from the slave processing elements.  
It then acknowledges the signal and sends a pixel to PE1 via the 36-bit crossbar.  A “pixel” in this sense, 
consists of four 10-bit values read from memory, each value representing a different spectral band.  PE0 
then waits until PE1 signals completion before it sends another pixel.  This process repeats until all 
available pixels have been exhausted.  At the end of the entire computation, PE0 raises the host interrupt, 
which signals completion to the host program. 

PE1 implements )()( ki
T

ki WXWX
rrrr

−− .  The multi-band input pixel arrives from PE0 via the crossbar and 
is stored in local registers, while the multi-band weight values are read from local memory.  The input pixel 
in our data set is 10 bits wide by 4 elements (bands) deep.  We perform an 11-bit element-wise signed 
subtraction with each weight in each training class, and obtain a 20-bit result from the squaring operation.  
We accumulate across the spectral bands, giving us a 22-bit scalar result.  This result is then passed through 
the 36-bit systolic connection to PE2 along with a value representing the current class under test.  We 
continue to process in the same fashion for each class in our data set, outputting a 22-bit scalar result for 
each class comparison.  When we have compared the input pixel with all weights from all classes, we 
signal PE0 to deliver a new pixel. 

PE2 implements the multiplication, where2K σ is a class-derived smoothing parameter given with the 
input data set.  The values are determined by the host computer and loaded into PE2 memory.  PE2 uses 
the class number passed to it by PE1 to index into local memory and retrieve a 16-bit value.  
Examination of the test data set reveals the range of  to be between 0.125 and 0.003472.  Limited to 16-

bit precision because of the memory architecture of the WildChild board, the 16-bit values are stored in 
typical fixed-point integer format, in this case shifted left by 18 bits to gain precision.  The result of the 
multiplication is a 38-bit value where bits 0...17 represent the fractional part of the result, and bits 18...37 
represent the decimal part.  To save work and area in follow-on calculations, we examine the multiplication 
result.  The follow-on computation is to compute e  in PE3.  For values larger than about 32 the 
exponentiation results in: , a very insignificant value.  Given the precision of later 
computations, we can and should consider this result to be zero.  Conversely, if the multiplication result is 
zero, then the exponentiation should result in 1.  We test the multiplication result for these conditions and 
set “zero” and “one” flags.  Therefore, we need not send any values larger than 32, resulting in any bits 
higher than the 23

2K

2K

2K

2K

(...)

1532 10*6.12 −− =e

rd bit to be extraneous.  Additionally, the lowest-order bit, bit 0, represents such a small 
value, it will not impact follow-on calculations.  Thus, only bits 1...22 of the multiplication result are sent 
to PE3, along with the flags indicating “zero” and “one” conditions. 
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PE3 implements the exponentiation in the equation.  As our memories in the slave PEs are only 16-bits 
wide, we cannot obtain enough precision to cover the wide range of exponentiation required in the 
algorithm by using only one lookup table.  Since we can break up e  into  by using two 
consecutive table lookups and one multiplication, we can achieve a higher precision result.  Given that the 
low-order bits are mostly fractional we devote less memory space to them than the higher order (decimal) 
portions.  Thus, out of the 22 bits, the lower 5 bits look up e  while the upper 17 bits look up  in 
memory.  If the input flags do not suggest the result to be either zero or one, these two 16-bit values 
obtained from memory are multiplied together and accumulated.  When all weights for a given class have 
been accumulated, we send the highest 32 bits of the result (the most significant) to PE4.  This limitation is 
due to the width of the systolic connection between processing elements.  In the next clock cycle we also 
send the constant associated with the class under consideration.  Like  in PE2, is class 
dependent, determined by the host, and loaded into the memory prior to the computation.  This constant is 
sent to the next PE because there was insufficient space in PE3 to implement another multiplier. 

a− cb ee −− *

2K

b− ce−

1K 1K

PE4 performs the  multiplication and class comparison.  The accumulated result from PE3 is multiplied 

by the  constant.  This is the final value, 
1K

1K )|( kSXf
r

, for a given class, .  As discussed, this 

represents the probability that pixel vector 

kS

X
r

 belongs to class .  PE4 compares each class result and 

keeps the class index of the highest value of 

kS

)|( kSXf
r

 for all classes.  When we have compared all 
classes for the pixel under test, we assign the class with the highest probability to the next consecutive 
memory location. 

The final mapping utilization for each processing element is given in Table 1. 

6.4.3 Host program 
As with any co-processor, there must be a host processor of some sort to issue work.  In this case, it is the 
FORCE VME Board.  The host program for the FORCE VME board is written in C and is responsible for 
packaging the data for writing to the FPGA co-processor, configuring the processing elements, and 
collecting the results when the FPGA co-processor signals its completion.  All communication between the 
host computer and the FPGA co-processor are via the VME bus. 

The host program first clears all the memories before loading them.  It then computes both constants and 
loads them into the appropriate memory locations of PE2 and PE3.  The exponential look-up values have 
been precomputed and written to data files that are subsequently loaded into in PE3’s memory.  Likewise, 
the weights are read from the input data file and loaded into PE1’s memory.  Finally, the multi-band pixel 
data is too large to completely fit within the memory of PE0.  Therefore, the host program simply 
iteratively loads portions of the pixel data into PE0’s memory and restarts the computation.  At the end of 
each iteration, the host program reads the result memory from PE4, clears it, and begins again. 

6.4.4 Optimized mapping 
To obtain higher performance, we applied a number of optimizations to the initial mapping.  The resultant 
optimized hand mapping is shown in Figure 6.  The accumulators in PE1 and PE3 slow the inter-arrival 
rates of follow-on calculations, giving rise to one optimization opportunity.  In our data set there are four 
bands and five classes.  Thus, PE2 and PE3 have inter-arrival rates of one-fourth that of PE1, while PE4 
has an inter-arrival rate of one-twentieth that of PE1.  Exploiting this we can use PE2 and PE4 to process 
more data in what would normally be their “stall”, or “idle” cycles.  This is accomplished by replicating 
PE1, modifying PE2 through PE4 to accept input every clock cycle, and modifying PE0 to send more 
pixels through the crossbar in a staggered fashion.  This mapping takes advantage of optimization 
opportunities present in the algorithm. 
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PE % Used 
PE0 5%
PE1-4 75%
PE5 85%
PE6 61%
PE7 54%
PE8 97%

Table 2: FPGA Utilization -- Optimized mapping 

As shown in Figure 6, we now use all nine FPGAs on the WildChild board.  FPGA utilization figures are 
given in Table 2.  PE0 retains its role as master controller and pixel memory handler (Pixel Reader).  The 
biggest modification is that the Pixel Reader unit now sends four pixels through the crossbar instead of 
one—one destined for each of four separate Subtract/Square units (PE1-PE4).  To facilitate the pixel 
reaching the right Subtract/Square unit, each pixel is tagged with an ID that corresponds to which unit 
should fetch the current pixel.  

Another new feature has to do with multiplexing the output of each of the Subtract/Square units into the K2 
Multiplier unit.  This is again accomplished through handshaking signals.  When one of the Subtract/Square 
units has completed a class, it signals PE0.  PE0 in turn reconfigures the crossbar to direct the output from 
the signaling Subtract/Square unit to the K2 Multiplier unit. 

The Subtract/Square units in PE1-PE4 remain virtually unchanged from the initial mapping except for 
minor handshaking changes with the Pixel Reader unit.  Each of the Subtract/Square units now fetches one 
of the four different pixels that appear on the crossbar.  This is accomplished by assigning each 
Subtract/Square unit a unique ID tag that corresponds to which pixel to fetch (0 through 3).  The 
Subtract/Square unit only fetches the pixel on the crossbar if its internal ID matches the ID of the pixel on 
the crossbar.  The other change is to the output stage.  Two cycles before output, each Subtract/Square unit 
signals the Pixel Reader unit to switch crossbar configurations in order to allow the Subtract/Square output 
to be fed to the K2 Multiplier unit through the crossbar. 

The K2 Multiplier unit, now in PE5, is pipelined in order to accept input every clock cycle.  The previous 
design was not pipelined in this fashion.  Now, instead of being idle for three out of four cycles, the K2 
Multiplier unit operates every clock cycle. 

The Exponent Lookup unit has not changed in function, but has changed considerably in implementation.  
Since results are now coming every clock cycle from the K2 Multiplier unit, exponentiation must be 
pipelined in order to accept input every clock cycle.  In the previous implementation, local memory was 
accessed twice for each multiply—once for e , and once for e .  This would not work in the current 
design as it would not be possible to accept input every clock cycle.  The change made was to utilize 5 bits 
of the crossbar to send the lookup to PE7, the Class Accumulator unit.  Since the Class Accumulator unit 
does not utilize memory, we can use that memory and map the address for the e lookup through the 
crossbar and into the RAM address in PE7.  Additionally, we map the resultant 16-bit value read from 
memory through the crossbar again and multiply the two 16-bit values together in another pipeline stage.  
The result is passed to the class accumulator through the systolic array connection. 

a− b−

b−

The Class Accumulator unit is slightly modified to work in a higher-throughput system.  Instead of 
accumulating a single pixel at a time, the accumulator must work on four pixels at once, one for each of the 
Subtract Square units.  This is accomplished by creating a vector of accumulator registers and working 
every clock cycle.  At the end of the accumulation, the results are sent via the systolic array connection to 
the K1 Multiplier/Class Comparator unit. 
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Figure 6: Optimized mapping 

 
The K1 Multiplier/Class Comparator unit, unlike the rest of the system, does not need to function every 
clock cycle.  The Class Accumulator, by its nature, does not produce an output every clock cycle.  
Therefore, we are free to use a slow but area-efficient multi-cycle multiplier to perform the K1 
multiplication. Instead of receiving  constants from the previous processing element, the constants are 
read from local memory.  This is possible because we do not utilize all memory locations in the local 
memory, allowing us to store constants. This unit accumulates class index maximums for each of the four 
pixels after the input data has been multiplied by the appropriate  class constants.  Like in the initial 
design, the results are written to memory after all classes for all four pixels have been compared. 

1K

1K

For this design to fit within one Xilinx 4010E FPGA, we were forced to utilize a smaller 8x8 multiplier in 
multiple cycles to compute the final 38-bit multiplication result. 

7 Results 

7.1 Test environment 
The software and hardware test platforms have been described in detail in sections 6.1 and 6.2 above.  
Timing was only measured for computational sections of the algorithm, thus ignoring file I/O time, which 
varies widely for each platform.  Timing was included in each implementation of the algorithm, which 
utilized a simple wall-clock method to measure elapsed time.  In addition to the implementations described 
above, additional timings were performed on software versions (Java and C) running on the MATCH 
testbed.  Unfortunately, Matlab was not available for our MATCH testbed nor the parallel machines (SGI 
Origin, IBM SP2, DSPs) at the time of this writing. 

For the reference platform (HP) the Matlab programs were written as Matlab scripts (m-files) and executed 
using version 5.0.0.4064.  The Java version was compiled to Java bytecode using HP-UX Java build 
B.01.13.04 and executed with the same version utilizing the Just-In-Time compiler.  The C version was 
compiled to native HP-UX code using the GNU gcc compiler version 2.8.1 on the HP platform 

For the parallel platforms, the native SGI, IBM, and DSP parallel C compilers were used.  For the 
additional software implementation timings on the MATCH testbed, gcc version 2.7.2.3 and Java version 
1.1.8 compilers were used. 

7.2 Performance 
Table 3 shows the results of our efforts in terms of number of pixels processed per second and lines of code 
required for the algorithm.  The “lines of code” value includes input/output routines and excludes graphical 
display routines.  Software version times are given for both the HP workstation and the MATCH testbed 
where appropriate. 
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Platform Method Pixels/sec Lines of code 
HP Matlab (iterative) 1.6 39
HP Matlab (vectorized) 36.4 27
HP Java 149.4 474
HP C 364.1 371
MATCH Java 14.8 474
MATCH C 92.1 371
MATCH Hardware+VHDL (initial) 1942.8 2205
MATCH Hardware+VHDL (optimized) 5825.4 2480

Table 3: Performance results (single processor) 

When compared to more current technologies (1997), such as the HP workstation, the optimized hardware 
implementation achieves the following speedups:  3640 versus the Matlab Iterative benchmark, 40 versus 
the HP Java version, and 16 versus the HP C version.  This comparison is somewhat of a direct CPU to 
CPU comparison. 

An alternate comparison can be made to quantify the acceleration that the FPGA co-processor can provide 
over just the FORCE 5V Sparc system.  This might be a better comparison for those seeking more 
performance from an existing reference platform by simply adding a co-processor such as the WildChild 
board.  In this case, we compare similar technologies, dating from 1995.  Comparing in this fashion, the 
hardware implementation is 390 times faster over the MATCH testbed Java version, and 63 times faster 
than the MATCH testbed executing the C version. 

Platform Processors Pixels/sec Lines of Code 
SGI Origin (shared) 1 962 509 
SGI Origin (shared) 2 1922 509 
SGI Origin (shared) 4 3837 509 
SGI Origin (shared) 8 7441 509 
SGI Origin (MPI) 1 965 496 
SGI Origin (MPI) 2 1928 496 
SGI Origin (MPI) 4 3862 496 
SGI Origin (MPI) 8 7592 496 
IBM SP2 (MPI) 1 322 496 
IBM SP2 (MPI) 2 629 496 
IBM SP2 (MPI) 4 1259 496 
IBM SP2 (MPI) 8 2506 496 
DSP (MPI) 4 245 699 

Table 4: Performance results (multiple processor) 

Finally, one can compare traditional methods of application acceleration, namely parallel computing 
methods, with our hardware implementation.  From Table 4 we can see that while the SGI outperforms the 
optimized hardware version, it is only by 30%.  One must also take into account the fact that the SGI 
Origin cost Northwestern University approximately $200,000 in 1997.  Comparatively, the MATCH 
testbed was about $50,000, which includes the cost of the VME chassis, the embedded PowerPC 
processors, the FPGA co-processor, and the DSP board.  In terms of performance, the hardware 
implementation attained approximately the same performance as the algorithm running on six processors of 
the SGI Origin.  Compared to the IBM SP2, which was $500,000 in 1996, the FPGA version handily 
outperformed even the eight-processor implementation.  And finally, versus the DSP board in the MATCH 
testbed, the FPGA implementation was more than 20 times faster. 

One conclusion we can draw from these results is that the hardware implementation is a much more cost-
effective means, from a hardware investment standpoint, to achieve higher performance.  It also important 
to note that no MATLAB implementations would have been able to take advantage of multiple processors 
automatically, thus reducing the performance to that of a single processor.  In that case, the hardware 
implementation is six times faster than a single SGI Origin processor, and nearly 20 times faster than a 
single node of the SP2. 
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Of course, a significant cost in the hardware approach is the volume of code and effort required.  The 
number of lines metric is included in an attempt to gauge the relative difficulty of coding each method.  
This is a strong motivating factor for our work in the MATCH Project.  With a speedup potential of over 
three orders of magnitude over what NASA scientists might typically use (MATLAB iterative) to prototype 
an algorithm, it is clear that reconfigurable computing is an approach worth considering. 

8 Conclusion 
There is little doubt that FPGAs will play a role in high-performance computing in NASA’s future.  Be it in 
ground-based data processing centers, or on-board processing for spacecraft, the need for higher 
performance computation is growing.  But reality is that the level of support for these technologies is 
decidedly low when compared to their software counterparts.  This is the deficiency we are trying to 
address with the development of the MATCH compiler and its associated framework. 

Satellite ground-based processing, especially with the launch of Terra, will need to be accelerated in order 
to accomplish the scientific tasks that they were designed for in a timely and cost-effective manner.  As we 
have shown, a typical image-processing application can be accelerated by several orders of magnitude over 
conventional software-only approaches by using adaptive computing techniques.  But, to accomplish this 
requires someone that is knowledgeable in the use of FPGA co-processors and is comfortable in a hardware 
description language such as VHDL or Verilog.  Very few scientists have the time to learn such languages 
and concepts.  Fortunately, MATCH will enable users of a high-level language such as MATLAB to 
increase the performance of their codes without intimate knowledge of the target hardware, thus enabling 
scientists to harness the power of reconfigurable computing. 

NASA has demonstrated an interest in adaptive technologies, as can be witnessed by the existence of the 
Adaptive Scientific Data Processing (ASDP) group at NASA’s Goddard Space Flight Center in Greenbelt, 
MD.  The ASDP is a research and development project founded to investigate adaptive computing with 
respect to satellite telemetry data processing [1].  They have done work in accelerating critical ground-
station data processing tasks using reconfigurable hardware devices.  Their work will be complemented 
with the advancement of the MATCH compiler, ultimately exposing more NASA scientists to the benefits 
of reconfigurable computing. 

A greater understanding of how developers will use the MATCH compiler will yield a better development 
tool that in turn yields better results.  Endeavoring to make the compiler more efficient in targeting FPGA 
resources for NASA algorithms, we will continue to research driver applications.  Using NASA 
applications as drivers will allow us to investigate optimization techniques that are immediately relevant to 
NASA scientists, who typically work with image and signal processing algorithms.  This research will 
result in a compiler that is capable of producing higher-quality results for NASA applications by applying 
learned optimization techniques automatically.  

In this work we have shown that reconfigurable computing can offer several orders of magnitude in 
speedups over software-only techniques for a typical NASA image processing application.  While these 
speedups are not trivial, nearly another order of magnitude is possible through clever optimizations of the 
initial mapping.  These optimization techniques are invaluable in the development of a smart, usable 
compiler. 
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11 Appendix A – Java code listing for PNN routine 
/* Java classification routine core */ 
public void JAVA_FP_Classify()  
{ 
 String time_string, row_string; 
 Long initial_time = (new Date().getTime()),  
   row_initial_time=0, 
   row_elapsed_time=0, 
   row_final_time=0, 
      elapsed_time; 
 double tmp,  
   tmpfl[] = new double[raw_data.num_classes], 
   sigma_x,  
   maxval_x,  
   curval_x,  
   term_x,  
   exp_m_x,  
   class_sum_x; 
 int  Class,  
   weight,  
   diff,  
   pix=0,  
   start; 
 long psum; 
   
 this.mythread = Thread.currentThread(); 
 this.mythread.setPriority(Thread.MIN_PRIORITY); 
   
 ((Component)parent).setCursor( new Cursor(Cursor.WAIT_CURSOR) ); 
   
 // pop up our timing dialog 
 PnnDialog dialog = new PnnDialog(parent); 
 dialog.setVisible(true); 
 dialog.setTitle("Local JAVA Classification"); 
 System.out.println("Local JAVA Classification"); 
 
 // precompute some sigma-based values 
 tmp = Math.pow(2.0*(22.0/7.0) , (raw_data.bands/2.0) ); 
 for (Class = 0; Class < raw_data.num_classes; Class++) 
  tmpfl[Class] = tmp * Math.pow(raw_data.Class[Class].sigma, raw_data.bands); 
 sigma_x= Math.pow(raw_data.Class[--Class].sigma, 2);  
 
 // classify entire image, row by row 
 for (int y = 0; y<raw_data.rows; y++)     
 { 
  // classify a row 
  start = (y*raw_data.cols); 
  row_elapsed_time = ( row_final_time - row_initial_time )/1000; 
  row_initial_time = new Date().getTime(); 
  row_string = "Last: "+Long.toString( row_elapsed_time )+"s"; 
    
  for(int x=start; x<(start+raw_data.cols); x++) 
  {  
   // get elapsed time samples and display times in dialog 
   // but don't do it too often, or things get too slow! 
   if ( (x%50) == 0 ) 
           { 
    elapsed_time = ((new Date().getTime()) - initial_time )/1000; 

           time_string =   "Elapsed: " + Long.toString( elapsed_time ) + "s " +  
        row_string; 

               dialog.TextLabel.setText(time_string); 
           } 
             
           maxval_x = -1; 
           weight=0; 
                 
           for(Class=0; Class<raw_data.num_classes; Class++) 
           { 
               class_sum_x = 0; 
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               for(int pattern=0; pattern<raw_data.Class[Class].patterns; pattern++) 
               { 
                   psum = 0; 
                      
                   for(int bands=0; bands<raw_data.bands; bands++) 
                   { 
                       diff = raw_data.pixels[pix+bands] - raw_data.weights[weight++]; 
                       psum += diff * diff; 
                   } // end of bands loop 
                           
                   term_x = ((double)psum)/(2.0*sigma_x); 
                   exp_m_x = Math.exp(-term_x); 
                   class_sum_x += exp_m_x;    
                           
               } // end of pattern loop 
                        
               if (raw_data.Class[Class].patterns == 0) 
               { 
                   curval_x = -1; 
               }  
               else  
               { 
                   curval_x = class_sum_x / (tmpfl[Class] *  
       raw_data.Class[Class].patterns); 
               } 
                        
               // assign color to pixel based on the largest class score. 
               if (maxval_x < curval_x) 
               { 
                   maxval_x = curval_x; 
                   pixels[x] = color_set.ClassColors[raw_data.Class[Class].ClassNumber]; 
               }  
                    
           } // end of Class loop                               
                 
   pix += raw_data.bands; // increment the raw data pixel "pointer" 
  } 
         
  // a row is finished; send the newly classified row to the screen 
  source.newPixels(0, y, raw_data.cols, 1); 
  parent.repaint(0); 
  mythread.yield(); 
  row_final_time = new Date().getTime(); 
             
  elapsed_time = ((new Date().getTime()) - initial_time )/1000; 
  time_string =   "Finished in " + Long.toString( elapsed_time ) + "s"; 
 
  dialog.TextLabel.setText(time_string); 
  dialog.setDismissButton(true); 
  Toolkit.getDefaultToolkit().beep(); 
            
  // how do we get this to appear without mouse motion? 
  ((Component)parent).setCursor( new Cursor(Cursor.DEFAULT_CURSOR) );  
} 
12 Appendix B – C code listing for PNN routine 
/* classifies using local floating-point algorithm... */ 
void pnn(void) 
{ 
  double tmp, sigma_x, maxval_x, curval_x, term_x, exp_m_x,class_sum_x; 
  double *tmpfl; 
  int class, weight, diff, pix=0, start; 
  int x, y, pattern, bands; 
  long psum; 
 
  printf("Beginning classification process\n"); 
  tmpfl = (double *)malloc(data.num_classes*sizeof(double)); 
 
  /* precompute some sigma-values */ 
  tmp = pow(2.0*M_PI, (data.bands/2.0) ); 
  for( class=0; class< data.num_classes; class++ ) { 
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    tmpfl[class] = tmp * pow(data.class[class].sigma, data.bands); 
  } 
  sigma_x = pow(data.class[--class].sigma,2); 
 
  /* classify entire image, row by row */ 
  printf("Percent done...\n"); 
  for (y = 0; y<data.rows; y++) { 
    fprintf(stderr,"\r%.2f%",(float)100*y/data.rows); 
    /* classify a row */ 
    start = (y*data.cols); 
    for(x=start; x<(start+data.cols); x++) {  
      maxval_x = -1; 
      weight=0; 
       
      for(class=0; class<data.num_classes; class++) { 
 class_sum_x = 0; 
  
 for(pattern=0; pattern<data.class[class].patterns; pattern++) { 
   psum = 0; 
    
   for(bands=0; bands<data.bands; bands++) { 
     diff = data.pixels[pix+bands] - data.weights[weight++]; 
     psum += diff * diff; 
   } /* end of bands loop */ 
    
   term_x = ((double)psum)/(2.0*sigma_x); 
   exp_m_x = exp(-term_x); 
   class_sum_x += exp_m_x;    
    
 } /* end of pattern loop */ 
  
 if (data.class[class].patterns == 0) { 
   curval_x = -1; 
 }  
 else { 
   curval_x = class_sum_x / (tmpfl[class] * data.class[class].patterns); 
 } 
  
 /* assign color to pixel based on the largest class score. */ 
 if (maxval_x < curval_x) { 
   maxval_x = curval_x; 
   image[x] = local_color[data.class[class].num]; 
 }  
      } /* end of Class loop */ 
      pix += data.bands; /*  increment the raw data pixel "pointer" */ 
    } /* end of x (row) loop */ 
    
    /* a row is finished; send the newly classified row to the screen 
       source.newPixels(0, y, raw_data.cols, 1); 
    */ 
  } /* end of y (entire image) block */ 
  printf("\rDone\n"); 
} 
 
13 Appendix C – Shared memory listing 
/* classifies using local floating-point algorithm... */ 
void pnn_parallel(void) 
{ 
  double tmp, sigma_x, maxval_x, curval_x, term_x, exp_m_x,class_sum_x; 
  double *tmpfl; 
  int class, weight, diff, pix, start; 
  int x, y, pattern, bands; 
  int rows_per_proc, myid, numprocs,start_row,end_row; 
  long psum; 
 
  /* static block partitioning */ 
  myid = m_get_myid(); 
  numprocs = m_get_numprocs(); 
  rows_per_proc = data.rows/numprocs; 
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  start_row = myid*rows_per_proc; 
  end_row   = (myid+1)*rows_per_proc; 
 
  /* advance pixel input to correct offset */ 
  pix = start_row*data.bands*data.cols; 
 
  printf("Processor %d: rows %d to %d / pixel %d\n",myid,start_row,end_row-1,pix); 
  tmpfl = (double *)malloc(data.num_classes*sizeof(double)); 
 
  /* precompute some sigma-values */ 
  tmp = pow(2.0*M_PI, (data.bands/2.0) ); 
  for( class=0; class< data.num_classes; class++ ) { 
    tmpfl[class] = tmp * pow(data.class[class].sigma, data.bands); 
  } 
  sigma_x = pow(data.class[--class].sigma,2); 
 
  /* classify our block of the image, row by row */ 
  for (y = start_row; y<end_row; y++) { 
    /* classify a row */ 
    start = (y*data.cols); 
 
    for(x=start; x<(start+data.cols); x++) {  
      maxval_x = -1; 
      weight=0; 
       
      for(class=0; class<data.num_classes; class++) { 
   class_sum_x = 0; 
  
   for(pattern=0; pattern<data.class[class].patterns; pattern++) { 
   psum = 0; 
    
   for(bands=0; bands<data.bands; bands++) { 
   diff = data.pixels[pix+bands] - data.weights[weight++]; 
   psum += diff * diff; 
   } /* end of bands loop */ 
    
   term_x = ((double)psum)/(2.0*sigma_x); 
   exp_m_x = exp(-term_x); 
   class_sum_x += exp_m_x; 
    
   } /* end of pattern loop */ 
 
   if (data.class[class].patterns == 0) { 
   curval_x = -1; 
   }  
   else { 
   curval_x = class_sum_x / (tmpfl[class] * data.class[class].patterns); 
   } 
  
   /* assign color to pixel based on the largest class score. */ 
   if (maxval_x < curval_x) { 
   maxval_x = curval_x; 
   image[x] = data.class[class].num; 
   }  
      } /* end of Class loop */ 
      pix += data.bands; /*  increment the raw data pixel "pointer" */ 
    } /* end of x (row) loop */ 
  } /* end of y (entire image) block */ 
  m_sync(); 
} 
 
14 Appendix D – MPI listing 
/* classifies using local floating-point algorithm... */ 
void pnn(void) 
{ 
  double tmp, sigma_x, maxval_x, curval_x, term_x, exp_m_x,class_sum_x; 
  double *tmpfl; 
  int class, weight, diff, pix=0, start; 
  int x, y, pattern, bands; 
  long psum; 
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  /* values used by everyone that need to be broadcast  
  Just recreate the data sets with partial pixels and weights */ 
 
  /* parallel variables */ 
  int myid, nprocs, i, p; 
  MPI_Status status; 
 
  /* setup parallel parameters */ 
  MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
  MPI_Comm_size(MPI_COMM_WORLD,&nprocs); 
 
  MPI_Bcast( &data.bands, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
  MPI_Bcast( &data.patterns, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
  MPI_Bcast( &data.num_classes, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
  MPI_Bcast( &data.rows, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
  MPI_Bcast( &data.cols, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
  MPI_Bcast( &data.imagefile_bands, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
  MPI_Bcast( &data.bytes_per_entry, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
  MPI_Bcast( &data.max_weight, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
  MPI_Bcast( &data.plength, 1, MPI_INT, 0, MPI_COMM_WORLD ); 
 
  /* update values for parallel processing */ 
  data.plength /= nprocs; 
  data.rows /= nprocs; 
 
  /* everyone else prepare the buffers */ 
  if( myid != 0 ) { 
  data.weights = (int *)malloc(data.max_weight*sizeof(int)); 
  data.pixels = (int *)malloc(data.plength*sizeof(int)); 
  data.class = (Class *)malloc(data.num_classes*sizeof(Class)); 
  image = (int *)malloc(data.rows*data.cols*sizeof(int)); 
  } 
 
  /* send data to all processors */ 
  if( myid == 0 ) { 
  for( p = 1; p<nprocs; p++ ) { 
  /* class array */ 
  for( i=0; i<data.num_classes; i++ ) { 
    MPI_Send(&( data.class[i].num ), 1, MPI_INT, p, 0, MPI_COMM_WORLD); 
    MPI_Send(&( data.class[i].patterns ), 1, MPI_INT, p, 0, MPI_COMM_WORLD); 
    MPI_Send(&( data.class[i].sigma ), 1, MPI_INT, p, 0, MPI_COMM_WORLD); 
  } 
  /* weights */ 
  MPI_Send(data.weights, data.max_weight, MPI_INT, p, 0, MPI_COMM_WORLD); 
  /* pixels */ 
  MPI_Send(&( data.pixels[p*data.plength] ), data.plength, MPI_INT, p, 0, 
MPI_COMM_WORLD); 
  } 
  } 
  /* receive */ 
  else { 
  /* the classes */ 
  for( i=0; i<data.num_classes; i++ ) { 
  MPI_Recv(&( data.class[i].num ), 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status); 
  MPI_Recv(&( data.class[i].patterns ), 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status); 
  MPI_Recv(&( data.class[i].sigma ), 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status); 
  } 
  /* weights */ 
  MPI_Recv(data.weights, data.max_weight, MPI_INT, 0, 0, MPI_COMM_WORLD, &status); 
  /* pixels */ 
  MPI_Recv(data.pixels, data.plength, MPI_INT, 0, 0, MPI_COMM_WORLD, &status); 
  } 
 
  /* precompute some sigma-values */ 
  tmpfl = (double *)malloc(data.num_classes*sizeof(double)); 
  tmp = pow(2.0*M_PI, (data.bands/2.0) ); 
  for( class=0; class< data.num_classes; class++ ) { 
    tmpfl[class] = tmp * pow(data.class[class].sigma, data.bands); 
  } 
  sigma_x = pow(data.class[--class].sigma,2); 
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  printf("%d working on %d rows\n",myid, data.rows); 
  /* classify entire image, row by row */ 
  for (y = 0; y<data.rows; y++) { 
    /* classify a row */ 
    start = (y*data.cols); 
    for(x=start; x<(start+data.cols); x++) {  
      maxval_x = -1; 
      weight=0; 
       
      for(class=0; class<data.num_classes; class++) { 
    class_sum_x = 0; 
    for(pattern=0; pattern<data.class[class].patterns; pattern++) { 
    psum = 0; 
    for(bands=0; bands<data.bands; bands++) { 
    diff = data.pixels[pix+bands] - data.weights[weight++]; 
    psum += diff * diff; 
    } /* end of bands loop */ 
    term_x = ((double)psum)/(2.0*sigma_x); 
    exp_m_x = exp(-term_x); 
    class_sum_x += exp_m_x; 
    } /* end of pattern loop */ 
 
    if (data.class[class].patterns == 0) { 
    curval_x = -1; 
    }  
    else { 
    curval_x = class_sum_x / (tmpfl[class] * data.class[class].patterns); 
    } 
  
    /* assign color to pixel based on the largest class score. */ 
    if (maxval_x < curval_x) { 
    maxval_x = curval_x; 
    image[x] = data.class[class].num; 
    }  
      } /* end of Class loop */ 
      pix += data.bands; /*  increment the raw data pixel "pointer" */ 
    } /* end of x (row) loop */ 
    /* a row is finished */ 
  } /* end of y (entire image) block */ 
 
  /* gather up the data */ 
  if( myid == 0 ) { 
  /* receive from all processors */ 
  for( p = 1; p<nprocs; p++ ) { 
  MPI_Recv( &( image[p*data.rows*data.cols] ), data.rows*data.cols, MPI_INT, p, 0, 
MPI_COMM_WORLD, &status ); 
  printf("Received data from processor %d\n",p); 
  } 
  } 
  else { 
  /* send from each of the slaves */ 
  MPI_Send( image, data.rows*data.cols, MPI_INT, 0, 0, MPI_COMM_WORLD); 
  } 
} 
 
15 Appendix E – DSP listing 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "/files1/match/mpi_match/mpi_match.h" 
 
/* inline routine */ 
#define MCHECK(m)       if (!m) { fprintf(stderr, "malloc failed\n"); exit(0); } 
 
/* constants */ 
#define M_PI 3.14159265358979323846 
 
main(int argc,char **argv) 
{ 
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  /* types */ 
  typedef unsigned char byte; 
  int *image; 
   
  /* *********************** 
   Variables 
   *********************** */ 
 
  /* structures */ 
  struct Class { 
  int num; 
  int patterns; 
  int sigma; 
  }; 
 
  struct Data { 
  int bands, patterns, num_classes; 
  int rows, cols, imagefile_bands, bytes_per_entry; 
  int max_weight; 
  int *weights; 
  int *pixels; 
  int plength; 
  struct Class *class; 
  }; 
 
  typedef struct Class Class; 
  typedef struct Data Data; 
 
  Data data; 
 
  /* mpi vars */ 
  int myid, i, proc, *buf, nprocs=4, the_id, chunksize, chunkmax; 
  int pixel_chunk, slave_plength, slave_rows; 
  MATCH_MPI_Status status; 
  /* pnn vars */ 
  double tmp, sigma_x, maxval_x, curval_x, term_x, exp_m_x,class_sum_x; 
  double *tmpfl; 
  int class, weight, diff, pix=0, start; 
  int x, y, pattern, bands; 
  long psum; 
  
  /* Init MPI */ 
  MATCH_MPI_Init(&argc,&argv); 
  MATCH_MPI_Comm_rank(MATCH_MPI_COMM_WORLD,&myid); 
 
  if( myid == dsp0 ) { 
  /* get data from force */ 
  printf("Waiting for force...\n"); 
 
  MATCH_MPI_Recv( &data.bands, 1, MATCH_MPI_INT, force0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.patterns, 1, MATCH_MPI_INT, force0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.num_classes, 1, MATCH_MPI_INT, force0, 0,    
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.rows, 1, MATCH_MPI_INT, force0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.cols, 1, MATCH_MPI_INT, force0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.imagefile_bands, 1, MATCH_MPI_INT, force0, 0,    
     MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.bytes_per_entry, 1, MATCH_MPI_INT, force0, 0,    
     MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.max_weight, 1, MATCH_MPI_INT, force0, 0,    
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.plength, 1, MATCH_MPI_INT, force0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
 
  /* prep buffers */ 
  data.weights = (int *)malloc(data.max_weight*sizeof(int)); 
  if( !data.weights ) { printf("weight malloc failed!\n"); exit(1); } 

Chang    24



  data.class = (Class *)malloc(data.num_classes*sizeof(Class)); 
  if( !data.class ) { printf("class malloc failed!\n"); exit(1); } 
  data.pixels = (int *)malloc(data.plength*sizeof(int)); 
  if( !data.pixels ) { printf("class malloc failed!\n"); exit(1); } 
  image = (int *)malloc(data.rows*data.cols*sizeof(int)); 
  if( !image ) { printf("image malloc failed!\n"); exit(1); } 
 
  /* class array */ 
  for( i=0; i<data.num_classes; i++ ) { 
  MATCH_MPI_Recv(&( data.class[i].num ), 1, MATCH_MPI_INT, force0, 0,   
      MATCH_MPI_COMM_WORLD, &status); 
  MATCH_MPI_Recv(&( data.class[i].patterns ), 1, MATCH_MPI_INT, force0, 0,   
     MATCH_MPI_COMM_WORLD, &status); 
  MATCH_MPI_Recv(&( data.class[i].sigma ), 1, MATCH_MPI_INT, force0, 0,   
      MATCH_MPI_COMM_WORLD, &status); 
  } 
 
  /* weights */ 
  MATCH_MPI_Recv(data.weights, data.max_weight, MATCH_MPI_INT, force0, 0,   
      MATCH_MPI_COMM_WORLD, &status); 
 
  /* distribute data to other dsps */ 
  data.rows /= 4; 
  slave_plength = data.plength / nprocs; 
  slave_rows    = data.rows / nprocs; 
 
  for( proc=1; proc<4; proc++ ) { 
  MATCH_MPI_Send( &data.bands, 1, MATCH_MPI_INT, dsp0+proc, 0,    
       MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.patterns, 1, MATCH_MPI_INT, dsp0+proc, 0,    
       MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.num_classes, 1, MATCH_MPI_INT, dsp0+proc, 0,    
      MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &slave_rows, 1, MATCH_MPI_INT, dsp0+proc, 0,    
       MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.cols, 1, MATCH_MPI_INT, dsp0+proc, 0,    
       MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.imagefile_bands, 1, MATCH_MPI_INT, dsp0+proc, 0,   
       MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.bytes_per_entry, 1, MATCH_MPI_INT, dsp0+proc, 0,   
       MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.max_weight, 1, MATCH_MPI_INT, dsp0+proc, 0,    
      MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &slave_plength, 1, MATCH_MPI_INT, dsp0+proc, 0,    
       MATCH_MPI_COMM_WORLD ); 
 
  for( i=0; i<data.num_classes; i++ ) { 
    MATCH_MPI_Send(&( data.class[i].num ), 1, MATCH_MPI_INT, dsp0+proc, 0,   
      MATCH_MPI_COMM_WORLD); 
    MATCH_MPI_Send(&( data.class[i].patterns ), 1, MATCH_MPI_INT, dsp0+proc,  
       0, MATCH_MPI_COMM_WORLD); 
    MATCH_MPI_Send(&( data.class[i].sigma ), 1, MATCH_MPI_INT, dsp0+proc, 0,  
       MATCH_MPI_COMM_WORLD); 
  } 
 
  /* send the weights in chunks */ 
  chunkmax = 16; 
  chunksize = 512; 
  for( i=0; i<chunkmax; i++ ) { 
    MATCH_MPI_Send(&data.weights[i*chunksize], chunksize, MATCH_MPI_INT,   
       dsp0+proc, 0, MATCH_MPI_COMM_WORLD); 
  } 
  } /* proc loop */ 
   
  /* big loop for pixels and processing */ 
  for( pixel_chunk = 0; pixel_chunk < 4; pixel_chunk++ ) { 
  /* pixels */ 
  MATCH_MPI_Recv(data.pixels, data.plength, MATCH_MPI_INT, force0, 0,   
      MATCH_MPI_COMM_WORLD, &status ); 
  /* send the pixels */ 
  for( proc=1; proc<4; proc++ ) { 
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    chunkmax = 128; 
    chunksize = 512; 
    for( i=0; i<chunkmax; i++ ) { 
    MATCH_MPI_Send(&data.pixels[(proc*slave_plength)+(i*chunksize)],   
   chunksize, MATCH_MPI_INT, dsp0+proc, 0, MATCH_MPI_COMM_WORLD); 
    } 
  } 
 
  /* PNN COMPUTATION */ 
  tmpfl = (double *)malloc(data.num_classes*sizeof(double)); 
   
  /* precompute some sigma-values */ 
  tmp = pow(2.0*M_PI, (data.bands/2.0) ); 
  for( class=0; class< data.num_classes; class++ ) { 
    tmpfl[class] = tmp * pow(data.class[class].sigma, data.bands); 
  } 
  sigma_x = pow(data.class[--class].sigma,2); 
       
  pix = 0; 
  for (y = 0; y<slave_rows; y++) { 
    /* classify a row */ 
    start = (y*data.cols); 
    for(x=start; x<(start+data.cols); x++) { 
    maxval_x = -1; 
    weight=0; 
     
    for(class=0; class<data.num_classes; class++) { 
    class_sum_x = 0; 
    for(pattern=0; pattern<data.class[class].patterns; pattern++) { 
      psum = 0; 
      for(bands=0; bands<data.bands; bands++) { 
      diff = data.pixels[pix+bands] - data.weights[weight++]; 
      psum += diff * diff; 
      } /* end of bands loop */ 
      term_x = ((double)psum)/(2.0*sigma_x); 
      exp_m_x = exp(-term_x); 
      class_sum_x += exp_m_x; 
    } /* end of pattern loop */ 
       
    if (data.class[class].patterns == 0) { 
      curval_x = -1; 
    }  
    else { 
      curval_x = class_sum_x / (tmpfl[class] *      
        data.class[class].patterns); 
    } 
       
    /* assign color to pixel based on the largest class score. */ 
    if (maxval_x < curval_x) { 
      maxval_x = curval_x; 
      image[x] = data.class[class].num; 
    }  
    } /* end of Class loop */ 
    pix += data.bands; /*  increment the raw data pixel "pointer" */ 
    } /* end of x (row) loop */ 
    /* a row is finished */ 
    printf("Row %d done\n",y); 
  } /* end of y (entire image) block */ 
  printf("Done\n"); 
     
    /* get data back from dsps */ 
  chunkmax = 32; 
  chunksize = 512; 
  for( proc=1; proc<4; proc++ ) { 
    for( i=0; i<chunkmax; i++ ) { 
    MATCH_MPI_Recv( &(image[proc*slave_rows*data.cols+i*chunksize]),   
 chunksize, MATCH_MPI_INT, dsp0+proc, 0, MATCH_MPI_COMM_WORLD, &status ); 
    }   
  } 
   
  /* send data to the force */ 
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  MATCH_MPI_Send( image, data.rows*data.cols*nprocs, MATCH_MPI_INT, force0,   
     0, MATCH_MPI_COMM_WORLD); 
  } /* pixel chunk loop */ 
  } 
  /* every other DSP */ 
  else { 
  /* get data from dsp0 */ 
  MATCH_MPI_Recv( &data.bands, 1, MATCH_MPI_INT, dsp0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.patterns, 1, MATCH_MPI_INT, dsp0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.num_classes, 1, MATCH_MPI_INT, dsp0, 0,     
     MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.rows, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD,   
     &status ); 
  MATCH_MPI_Recv( &data.cols, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD,   
     &status ); 
  MATCH_MPI_Recv( &data.imagefile_bands, 1, MATCH_MPI_INT, dsp0, 0,    
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.bytes_per_entry, 1, MATCH_MPI_INT, dsp0, 0,    
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.max_weight, 1, MATCH_MPI_INT, dsp0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
  MATCH_MPI_Recv( &data.plength, 1, MATCH_MPI_INT, dsp0, 0,     
      MATCH_MPI_COMM_WORLD, &status ); 
 
  data.weights = (int *)malloc(data.max_weight*sizeof(int)); 
  data.pixels = (int *)malloc(data.plength*sizeof(int)); 
  data.class = (Class *)malloc(data.num_classes*sizeof(Class)); 
  image = (int *)malloc(data.rows*data.cols*sizeof(int)); 
 
  for( i=0; i<data.num_classes; i++ ) { 
  MATCH_MPI_Recv(&( data.class[i].num ), 1, MATCH_MPI_INT, dsp0, 0,    
      MATCH_MPI_COMM_WORLD, &status); 
  MATCH_MPI_Recv(&( data.class[i].patterns ), 1, MATCH_MPI_INT, dsp0, 0,   
      MATCH_MPI_COMM_WORLD, &status); 
  MATCH_MPI_Recv(&( data.class[i].sigma ), 1, MATCH_MPI_INT, dsp0, 0,   
      MATCH_MPI_COMM_WORLD, &status); 
  } 
   
  /* receive weights */ 
  chunkmax = 16; 
  chunksize = 512; 
  for( i=0; i<chunkmax; i++ ) { 
  MATCH_MPI_Recv(&data.weights[i*chunksize], chunksize, MATCH_MPI_INT, dsp0,  
      0, MATCH_MPI_COMM_WORLD, &status); 
  } 
 
  for( pixel_chunk = 0; pixel_chunk < 4; pixel_chunk++ ) { 
  /* recv the pixels in the same way */ 
  chunkmax = 128; 
  chunksize = 512; 
  for( i=0; i<chunkmax; i++ ) { 
    MATCH_MPI_Recv(&data.pixels[i*chunksize], chunksize, MATCH_MPI_INT,   
       dsp0, 0, MATCH_MPI_COMM_WORLD, &status); 
  } 
   
  /* PNN COMPUTATION */ 
  tmpfl = (double *)malloc(data.num_classes*sizeof(double)); 
   
  /* precompute some sigma-values */ 
  tmp = pow(2.0*M_PI, (data.bands/2.0) ); 
  for( class=0; class< data.num_classes; class++ ) { 
    tmpfl[class] = tmp * pow(data.class[class].sigma, data.bands); 
  } 
  sigma_x = pow(data.class[--class].sigma,2); 
       
  pix = 0; 
  for (y = 0; y<data.rows; y++) { 
    /* classify a row */ 
    start = (y*data.cols); 
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    for(x=start; x<(start+data.cols); x++) {  
    maxval_x = -1; 
    weight=0; 
     
    for(class=0; class<data.num_classes; class++) { 
    class_sum_x = 0; 
    for(pattern=0; pattern<data.class[class].patterns; pattern++) { 
      psum = 0; 
      for(bands=0; bands<data.bands; bands++) { 
      diff = data.pixels[pix+bands] - data.weights[weight++]; 
      psum += diff * diff; 
      } /* end of bands loop */ 
       
      term_x = ((double)psum)/(2.0*sigma_x); 
      exp_m_x = exp(-term_x); 
      class_sum_x += exp_m_x; 
       
    } /* end of pattern loop */ 
     
    if (data.class[class].patterns == 0) { 
      curval_x = -1; 
    }  
    else { 
      curval_x = class_sum_x / (tmpfl[class] *      
        data.class[class].patterns); 
    } 
     
    /* assign color to pixel based on the largest class score. */ 
    if (maxval_x < curval_x) { 
      maxval_x = curval_x; 
      image[x] = data.class[class].num; 
    }  
    } /* end of Class loop */ 
    pix += data.bands; /*  increment the raw data pixel "pointer" */ 
    } /* end of x (row) loop */ 
    /* a row is finished */ 
  } /* end of y (entire image) block */ 
   
  /* send data back to dsp0 */ 
  chunkmax = 32; 
  chunksize = 512; 
  for( i=0; i<chunkmax; i++ ) { 
    MATCH_MPI_Send(&image[i*chunksize], chunksize, MATCH_MPI_INT, dsp0, 0, 
MATCH_MPI_COMM_WORLD); 
  } 
  } 
  } 
  MATCH_MPI_Finalize(); 
} 
 

16 Appendix F – DSP host controller listing 
/* distribute the data and read it back from dsp0 */ 
void distribute_data(void) 
{ 
  /* parallel variables */ 
  int myid, i, chunkmax, chunksize, pixel_chunk; 
  MATCH_MPI_Status status; 
 
  /* setup parallel parameters */ 
  MATCH_MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
 
  /* pixel chunk modification */ 
  data.plength /= 4; 
 
  /* send data to dsp0 */ 
  printf("Sending scalar data to dsp0\n"); 
  MATCH_MPI_Send( &data.bands, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.patterns, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.num_classes, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.rows, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD ); 
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  MATCH_MPI_Send( &data.cols, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.imagefile_bands, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD 
); 
  MATCH_MPI_Send( &data.bytes_per_entry, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD 
); 
  MATCH_MPI_Send( &data.max_weight, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD ); 
  MATCH_MPI_Send( &data.plength, 1, MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD ); 
 
  printf("Sending class data\n"); 
  for( i=0; i<data.num_classes; i++ ) { 
 MATCH_MPI_Send(&( data.class[i].num ), 1, MATCH_MPI_INT, dsp0, 0,  
      MATCH_MPI_COMM_WORLD); 
  MATCH_MPI_Send(&( data.class[i].patterns ), 1, MATCH_MPI_INT, dsp0, 0,  
      MATCH_MPI_COMM_WORLD); 
  MATCH_MPI_Send(&( data.class[i].sigma ), 1, MATCH_MPI_INT, dsp0, 0,  
      MATCH_MPI_COMM_WORLD); 
  } 
  /* weights */ 
  printf("Sending weights\n"); 
  MATCH_MPI_Send(data.weights, data.max_weight, MATCH_MPI_INT, dsp0, 0,  
     MATCH_MPI_COMM_WORLD); 
  
  /* pixels */ 
  for( pixel_chunk =0; pixel_chunk< 4; pixel_chunk++ ) { 
  MATCH_MPI_Send( &data.pixels[data.plength*pixel_chunk], data.plength, MATCH_MPI_INT, 
dsp0, 0, MATCH_MPI_COMM_WORLD); 
  /* gather up the data */ 
  MATCH_MPI_Recv( &image[pixel_chunk*data.rows*data.cols/4], data.rows*data.cols/4,  
       MATCH_MPI_INT, dsp0, 0, MATCH_MPI_COMM_WORLD, &status ); 
  } 
} 
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