Automated Least-Significant Bit Datapath
Optimization for FPGAs

Mark L. Chang and Scott Hauck
Department of Electrical Engineering
University of Washington
Seattle, Washington
Email: {mchang,hauck@ee.washington.edu

Abstract—In this paper we present a method for FPGA bit level. This allows the developer to tune datapaths to any
datapath precision optimization subject to user-defined area and word size desired. Unfortunately, choosing the appropriate
error constraints. This work builds upon our previous research size for datapaths is not trivial. Choosing a wide datapath

[1] which presented a methodology for optimizing for dynamic . | I Its i .
range—the most significant bit position. In this work, we present as In a general-purpose processor, usually resuits in an im-

an automated optimization technique for the least-significant Plementation that is larger than necessary. This consumes
bit position of circuit datapaths. We present results describing valuable resources and potentially reduces the performance of
the effectiveness of our methods on typical signal and image the design. On the other hand, if the hardware implementation
processing kernels. uses too little precision, errors can be introduced at runtime
through quantization effects, such as roundoff and truncation.
. .] _ To alleviate the programmer’s burden of doing manual
With the widespread growth of reconfigurable computingrecision analysis, researchers have proposed many different
platforms in education, research, and industry, more softwafgtions. Techniques range from semi-automatic to fully-
developers are being exposed to hardware development. Mafiyomated methods that employ static and dynamic analysis

are seeking to achieve the enormous gains in performang&:ircuit datapaths. We will touch on some of these efforts in
demonstrated in the research community by implementifge following section.

their software algorithms in a reconfigurable fabric. For the
novice hardware designer, this effort usually begins and en
with futility and frustration as they struggle with unwield
tools and new programming paradigms. In determining the fixed-point representation of a floating-
One of the more difficult paradigm shifts to grasp is thgoint datapath, we must consider both the most-significant
notion of bit-level operations. On a typical FPGA fabricand least-significant ends. Reducing the relative bit position
logical and arithmetic operators can work at the bit levelf the most-significant bit reduces the maximum value that
instead of the word level. With careful optimization of thehe datapath may represent, sometimes referred to as the
precision of the datapath, the overall size and relative speg¢ghamic range. On the other end, increasing the relative bit
of the resulting circuit can be dramatically improved. position of the least-significant bit (toward the most-significant
In this paper we present a methodology that broadesad) reduces the maximum precision that the datapath may
the work presented in [1]. We begin with background oattain. For example, if the most-significant bit is at te
precision analysis and previous research efforts. We descrgiassition, and the least-significant bit is at the? position,
the problem of least-significant bit optimization and develofhe maximum value attainable by an unsigned number will be
several optimization techniques that provide finer control @65.875, while the precision will be quantized to multiples of
area-to-error tradeoffs than more traditional methods. We then® = 0.125. Values smaller thaf.125 cannot be represented
present a simulated annealing-based approach to automaticadlthe bits necessary to represent, for exantp25, do not
apply these optimizations to a datapath. Finally, we presesist.
the results of using our techniques to optimize the datapath ofHaving a fixed-point datapath means that results or op-
image processing circuits and draw some conclusions. erations may exhibit some quantity of error compared to
their floating-point counterparts. This quantization error can
be introduced in both the most-significant and least-significant
General-purpose processors are designed to perform opsides of the datapath. If the value of an operation is larger than
tions at the word level, typically 8, 16, or 32 bits. Supportinthe maximum value that can be represented by the datapath,
this paradigm, programming languages and compilers abstrdm quantization error is typically a result of truncation or
these word sizes into storage classes, or data-types, ssaturation, depending on the implementation of the operation.
aschar, int, andfloat . In contrast, most mainstreamLikewise, error is accumulated at the least-significant end of
reconfigurable logic devices, such as FPGAs, operate at the datapath if the value requires greater precision than the

I. INTRODUCTION

.SThe Least-Significant Bit Problem

Il. BACKGROUND

datapath can represent, resulting in truncation or round-off
A,0, 0.27 -1

error.
Previous research includes [2], [3], which only performs 0.2 4297
the analysis on the most-significant bit position of the dat- C

apath. While this method achieves good results, it ignores

the potential optimization of the least-significant bit position. B O

Other research, including [4], [5] begin to touch on fixed-point PrVYs (.29 —1

integer representations of numbers with fractional portions.

Finally, more recent research, [6], [7] begin to incorporate Fig. 1. Error model of an adder.
error analysis into the overall optimization of the fractional

width of the datapath elements. A0 0.2” -1

Most of the techniques introduced deal with either limited m* p o
scope of problem, such as linear time-invariant (LTI) systems, 0.AE +BE —-E E
and/or perform the analysis completely automatically, with q pop
minimal input from the developer. While again, these methods
achieve good results, it is our belief that the developer should Bn() 0.29_1
be kept close at hand during all design phases, as there are *
some things for which an automatic optimization method
simply cannot handle.

Simply put, a “goodness” metric must be devised in or-
der to guide an_autpmatic precision optimization tool. Thiﬁave been effectively truncated, resulting infef = -+ p-bit
“goodness” function is then evaluated by the automated tool\m)rd_
guide it; precisipn optimizatiqn. In SOME cases, such as im""g‘?ﬂaving performed a reduction in the precision that can be
processing, a simple block signal-to-noise ratio (BSNR) may,i,ineq by this datapath with a substitution of zeros, we have

be appropriate. In many cases, though, this metric is difficult g ceq” o quantifiable amount of error into the datapath.
impossible to evaluate programmatically. A human develop?_r

heref has the benefit of havi h olg anA,,0, value, substituting zeros for the lower portion
therefore, has the benefit of having a much greater sense,plyo \org, gives us a maximum error @ — 1. This

context in evaluating what is an appropriate tradeoff betwe ximum error occurs when the bits replaced were originally
error in the output and performance of the impIementatioBnes making this result too low by the amougt — 1. If

we _have used thi$ _idea as th_e 9““{””_9 principle_ behind tﬂ?e bits replaced were originalkeros we will have incurred
design of our precision analysis tool&ers [1]. In this paper ., orror e will use the notatiof..2? — 1] to describe this

we provide the metrics and methodology for performing leaslsgtant error range that our substitution method produces.

significant-bit optimization. This error model can be used to estimate the effective error
of combining quantized values in arithmetic operators. To
investigate the impact, we will discuss an adder and multiplier

The observation that the relative bit position of the leasi? greater detail.
S|gn|_f|cant _b|t mtroduceg a qu_antlflable amount of error OVEr R A qder Error Model
floating-point datapath is an important one. After performing
the optimization for the most-significant bit position as de- An adder error model is shown in Fig. 1. The addition of
scribed in [1], we must perform an area/error analysis pha¥¢0 quantized values4,,,0, + B,,0,, results in an output’,
to optimize the position of the least-significant bit. In ordewhich has a total ofmax(M’, N) + 1 bits. Of these bits,
to quantify changes to the datapath, we introduce models foin(p, ¢) of them are substituted zeros at the least-significant
area and error estimation of a general island-style FPGA. end. In an adder structure, the range of error for the output,

Consider an integer value that /&’ bits in length. This C. is the sum of the error ranges of the two inputsand B.
value has an implicit binary point at the far right—to the righf his gives us an output error range [6f.27 4 27 — 2],
of the least-significant bit position. By truncating bits from the .
least-significant side of the word, we reduce the area impﬁ:t Multiplier Error Model
of this word on downstream arithmetic and logic operations. Just as we can derive an error model for the adder, we do
It is common practice to simply truncate the bits from th#he same for a multiplier. Again we have two quantized input
least-significant side to reduce the number of bits requiredlues, A,,0, * B,,0,. These are multiplied together to form
to store and operate on this word. We propose an alterntte output,C, which has a total of\’ + N’ bits. Here,p + ¢
method—replace the bits that would normally be truncated them are substituted zeros at the least-significant end. This
with constants, in this case zeros. Therefore, forMdfibit structure is shown in Fig. 2.
value, we will use the notatiod,,,0,,. This denotes a word The output error is more complex in the multiplier structure
that hasm correct bits angh zeros inserted to signify bits thatthan the adder structure. The input error ranges are the same,

q

Fig. 2. Error model of a multiplier.

I1l. ERRORMODELS

[0..27—1] and[0..27—1] for A,,,0,, and B,,0,, respectively. Un-)y N / \

like the adder, multiplying thege two in;uts together requires A A A|AA A A O

us to multiply the error terms as well, as shown in (1). + |BRIIB B BI|IB O O O O

C=AxB I I o u___
= (A= (2" = 1) % (B~ (2 1)) (@)

= AB—B(2" — 1) — A(27 — 1) + (2" — 1)(2¢ — 1) HIFF F FJ|HHW W W W

The first line of (1) indicates the desired multiplication oper-
ation between the two input signals. Since we are introducing Fig. 3. Adder hardware requirements.
errors into each signal, line two shows the impact of the error

range ofA,,,0, by subtracting” — 1 from the error-free input TABLE |
A. The same occurs for inpus. ADDER AREA
. tPerlforrTnlndg a,:hSUb-StltlitlonZOEp =2 —landE, =27-1 Number [Hardware
into (1) yields the simpler (2): max(|M’ — N'|,0) half-adder
C =AB - BE,— AE,+ E,FE, @ max(M’, N') — max(p,q) — |[M' — N’| — 1 || full-adder
. _ _ 1 half-adder
— AB — (AE, + BE, — E,E,) . g

From (2) we can see that the range of error resulting on
the outputC' will be [0.AE, + BE, — E,E,]. That is to
say, the error that the multiplication will incur is governed byA. Adder Hardware Model

the gctual correc'F values of and B, mu]t|pl|ed by the.error In a 2-LUT architecture, a half-adder can be implemented
attained by each input. In terms of maximum error, this occuy

) i i CCUGIth a pair of 2-LUTs. Combining two half-adders together
Whe_n we consider the_ maxmum_attamable value_of the |angﬁd an OR gate to complete a full-adder requires five 2-
multiplied by the maximum possible error of the inputs. LUTSs. To derive the hardware model for the adder structure as
described in previous sections, we utilize the example shown
in Fig. 3.

In the previous section we derived error models for adder Starting at the least-significant side, all bit positions that
and multiplier structures. Error is only one metric upon whicbverlap with zeros need only wires. The next most significant
we will base optimization decisions. Another crucial piece dfit will only require a half-adder, as there can be no carry-in
information is hardware cost in terms of area. from any lower bit positions, as they are all wires. For the rest

By performing substitution rather than immediate truncasf the overlapping bit positions, we require a regular full-adder
tion, we introduce a critical difference in the way hardwarstructure, complete with carry propagation. Finally, at the
will handle this datapath. Unlike the case of immediatmost-significant end, if there are any bits that do not overlap,
truncation, we do not have to change the implementation we require half-adders to add together the non-overlapping
downstream operators to handle different bit-widths on thits with the possible carry-out from the highest overlapping
inputs. Likewise, we do not have to deal with alignment issuefsill-adder bit.
as all inputs to operators will have the same location of the The relationship described in the preceding paragraph is
binary point. generalized into Table I, using the notation previously outlined.

For example, in an adder, as we reduce the number of bigr the example in Fig. 3, we have the following formula to
on the inputs, the area requirement of the adder decreaskescribe the addition.

The same relationship holds true when we substitute zeros in

place of variable bits on an input. This is true because we can Am0p + Bn0y
simply use wires to represent static zeros or static ones, so the m=Tp=1n=549g=4
hardware cost in terms of area is essentially zero. .))

If the circuit is specified in a behavioral fashion using a 1hiS operation requires two half-adders, three full-adders,
hardware description language (HDL), this optimization i@nd four wires. In total, 19 2-LUTs.
likely to fall under the jurisdiction of vendor tools such as o
the technology mapper and the logic synthesizer. Fortunaté%'/, Multiplier Hardware Model
this constant propagation optimization utilizing wires is im- We use the same approach to characterize the multiplier. A
plemented in most current vendor tools. multiply consists of a multiplicand (top value) multiplied by a

In the next sections we outline the area models used rnultiplier (bottom value). The hardware required for an array
perform area estimation of our datapath. We will assumenaultiplier consists of AND gates, half-adders, full-adders, and
simple 2-LUT architecture for our target FPGA and validateires. The AND gates form the partial products, which in turn
this assumption through implementation on target hardwarere inputs to an adder array structure as shown in Fig. 5.

IV. HARDWARE MODELS

AO0 AO
A0 A0 A0 0O
AB AB AB 0B

Area of ADD32: Model vs. Xilinx Virtex
T T

—-©- ADD32 Model
—+— ADD32 Verilog

09r

o
®
T

Normalized area (LUTs)
o
3

+ AB AB AB 0B

0.6

Fig. 4. Multiplication example. 0s, s . 6 5 0 2 1

Number of zeros substituted
1,1 02 1,0 0,1 0,0 . e .
Fig. 6. Adder model verification.

Area of MULT32: Model vs. Xilinx Virtex
T T T T

-

1,3 1,2 03
\ [[[
—‘HAHFAHFAHHA‘
2,3 2,2 2,1 2,0
\ \ \ \
FA || FA |- FA || Ha |
33 3,2 3,1 3,0
\ \ \ \
HFAHFAHFAHHA‘
\ \ \ \

p7 po6 p5 p4 p3 p2 pl po

T
—©- MULT32 Model
—+— MULT32 Verilog

o
©
T

y

Normalized area (LUTSs)
o o 1)
o o S
/

Fig. 5. Multiplication structure.

Referring to the example in Fig. 4, each bit of the input that o3}
has been substituted with a zero manipulates either a row or
column in the partial product sum calculation. For each bit of °% 2 7 Numbérmem“uimm 10 12 1
the multiplicand that is zero, we effectively remove an inner
column. For each bit of the multiplier that is zero, we remove
an inner row. Thus:

Fig. 7. Multiplier model verification.
A0y * B0,

m=3p=1n=2¢=2 supplied place and route tools.

structures in Verilog on the Xilinx Virtex FPGA using vendor-

For the adder structure, we observe in Fig. 6 that our

is effectively a 3x2 multiply, instead of a 4x4 multiply. Thismodel closely follows the actual implementation area, being at
requires two half-adders, one full-adder, and six AND gategorst within two percent of the actual Xilinx Virtex hardware
for a total of 15 2-LUTs. This behavior has been generalizgghplementation. The number of bits substituted was the same

into formulas shown in Table II.

C. Model Verification

for each input at each data point.
The multiplier in Fig. 7 has a similar result to the adder,
being at worst within 12 percent of the Xilinx Virtex im-

To verify our hardware models against real-world impleplementation. These results support the use of our simple 2-
mentations, we implemented both the adder and multiplietJT approximation of general island-style FPGAs to within

TABLE I

MULTIPLIER AREA

a reasonable degree of accuracy.

V. OPTIMIZATION METHODS

Using the models described in the previous sections, we can
now quantify the tradeoffs between area and error of various

Number H Hardware oo . .
_ optimization methodologies.
min(m,n) half-adder
mn—m —n | full-adder A. The Nature of Error
mn AND Looking at the typical error introduced into a data path using
pta wire the standard method of simple truncation, we see that the error

Amlp _(2]) _1)0 Amop 0.27 -1

E E
q P
-—(2A-E).—@2B+E)
—(27 -1).27-1 c 2 72 ‘
C
B,1, "—(27-1).0
B O q
n-q 0.27-1 Fig. 9. Normalized error model of a multiplier.
Fig. 8. Normalized error model of an adder. A0, o0.2r-1
p o -
0.2°P+29-2
is skewed, or biased, only in the positive direction. As we c
continue through datapath elements, if we maintain the same g 0.29-1 -(2"-1.2°-1
truncation policy to reduce the area requirement of our circuits, = " C

our lower-bound error will remain zero while our upper bound
will continue to skew toward larger and larger positive values. 1q
This behavior also holds true for our own zero-substitution
policy in Fig. 1 and Fig. 2.

This error profile does not coincide with our natural un-

derstanding of error. In most cases we consider the erigf g pstitution, yielding an error range that can be biased. Fig.
of a result to be thenet distance from the correct value g gepicts a normalization centered on zero by substituting ones

implying that the error term can be either positive or neggsiead of zeros for inpuB. The derivation of the resultant
tive. Unfortunately, neither straight truncation nor our zerQseor range is as follows in (3):

substitution policy, as defined in previous sections, matches

this notion of error. Fortunately, substituting constants for the ~ € = (A — E,)(B + Eq)
least-significant bits allows us to manipulate their static values =AB+ AE, - BE, — E,E,

and capture this more intuitive behavior of error. We call this = AB + AE, — (BE, + E,E,)
process “renormalization”. EE

= AB + AE, — % - (BEp+

Fig. 10. Inserting a constant add performs an “active renormalization”.

E,E, 3
B. Renormalization 2

It is possible for us to capture the more natural description
of error with our method of zero-substitution because the least-

significant bits are still present. We can use these bits to manipAnother method of renormalization can be accomplished
ulate the resultant error range. An example of renormalizatigfter an operation, or operations, have been completed. By
in an adder structure is shown in Fig. 8. We describe thigserting a constant addition, we can accomplish a very
method as “in-line renormalization” as the error range is biasefiilar biasing of error range, this time referred to as “active

during the calculation. It is accomplished by modifying ongenormalization”. An example is shown in Fig. 10.
of the input operands with one-substitution instead of zero-

substitution. This effectively flips the error range of that inpde- Renormalization Area Impact
around zero. The overall effect is to narrow the resultant errorThe benefits of renormalization can come very cheaply in
range, bringing the net distance closer to zero. Specificallytéfrms of area for the “in-line” method. Our adder structure
the number of substituted zeros and ones are equal, we achiexample in Fig. 3 originally requires 19 2-LUTs and has an
an error range whose net distance from zero is half that if veeror range of[0..16]. We can achieve a completely negative
were to use zero substitution only. If instead truncation wekgas of [—16..0] without an area penalty by modifying the
performed, no further shaping of the error range would ksructure of the least-significant half-adder to have a constant
possible, leaving us with a positively skewed error range ncarry-in of 1. At the 2* bit position, this effectively adds 16
consistent with our natural notion of error. to the addition without incurring an area penalty. This has the
For example, in Fig. 1, a substitution pfq zeros results in same effect as using the “active renormalization”, where an
an error range of0..27 + 27 — 2]. By using renormalization, explicit addition is performed to change the error bias of the
this same net distance from the real value can be achiewktapath. Alternatively, if we wanted to balance the error, we
with more bit substitutionsp + 1,¢ + 1, on the input. This could achieve an error range ¢f8..8] by doing the same
will yield a smaller area requirement for the adder. Likewiséhing but at one bit position loweg?. Unfortunately, since
the substitution of, ¢ zeros with renormalization now incursthere is no existing half-adder hardware to modify for this bit
half the error on the outpuf(2? — 1)..2¢ — 1], as shown in position, we must create a half-adder structure at2hdit
Fig. 8. position to add together the value from inplitand a constant
As with the adder structure, renormalization of the multi1”. We also must change the existing half-adder at #ie
plier is possible by using different values for least-significamqtosition into a full-adder to compensate for the possibility of

E E
= AB + 7‘1(214— E,) — ?p(QBJFEq)

a carry-out from the newly added half-adder. Together, this A A A A
increases the area requirement of this adder by 5 2-LUTs.

Finally, we can do a smaller renormalization by substituting X B B B B
a “1” for one of the least-significant bits on one of the inputs.
This would yield an output error range ¢f1..15]. While

not particularly biased, it doesn't incur any area penalty as AB
the newly substituted “1” lines up with a zero from the other AB AB
input, requiring no computational hardware.

Even when substituted ones and zeros on the inputs com- AB AB AB
pletely overlap, consideration must be made for downstream + AR AR AB AB

operations, as we now have ones in the least-significant bit
positions which may need to be operated upon in subsequent
operations. This may adversely impact the overall area of
the circuit, at which point “active” renormalization should be Remove
considered as an alternative that can be implemented cheaply
later in the datapath to “fix up” the error range using a constafig- 11. A truncated multiplier removes least-significant columns from the
bias. partial product array.

The behavior of renormalization in multiplier structures is . 32+t Mulipliers: Zero Substiuton vs. Truncated
equally interesting. As can be seen in Fig. 4, zeros substituted ° o ‘ ‘ ‘ ‘
at the least-significant end of either the multiplier or the ° 5
multiplicand “fall” all the way through to the result. For the ° 5
multiplication A,,0, * B,1,4, p zeros will be present at the N °
least-significant end of the result. With this behavior, we can ©°f S a
obtain a renormalized error result while still providing zero-
substituted bit positions that will not have to be operated
upon in downstream operations. This is important in providing
opportunities for area savings throughout the datapath. As with =} CN
the adder structure, we pay a penalty for this renormalization. %,
For the multiplier, we must put back an inner row and
column for each one-substitution present in the multiplier and
multiplicand, respectively. o ‘ ‘ ‘ ‘ ‘ ‘ ‘

Finally, active renormalization has an area penalty. As it S A e <
is simply an addition between an input value and a constant

positive bias, the impact is simply the area requirement of tﬁ@ 12. Error to area profile of zero-substitution 32-bit multiplier and
biasing addér trincated 32-bit multiplier.

Normalized Error
>

>
wle ool

D. Alternative Arithmetic Structures . . .
operations at upstream nodes. This makes it more valuable

As discussed in previous sections, our zero-substitutig mytiplications closer to the inputs than those closer to the
method for multipliers gives a reduced area footprint at thg,ipyts.

cost of increased error in the output over an exact arithmetic

multiplication. An alternative to this method of area/error VI. AUTOMATED OPTIMIZATION

tradeoff is one described in [8]. This work, and the work of We have presented in the previous section several optimiza-

others ([9], [10]), focuses on removing a number of leastion methods designed to allow more control of the area/error

significant columns of the partial-product array. profile of our datapath. Unfortunately, due to the strongly
As described in [9], by removing the least-significant interconnected nature of datapaths and dataflow graphs in

columns from an array-multiplier multiplication, we save (fogeneral, it is hard to analytically quantify the impact of each

n > 2) nnt) AND gates,% full adders, andn—1) method on the overall profile of the system. Making a small

half adders. The column removal is depicted in Fig. 11. Thihange, such as increasing the number of zero-substituted
method has a different area-to-error tradeoff profile, and léts at a particular primary input, will impact the breadth of
shown in Fig. 12 for a 32-bit multiplier. possible optimizations available at every node.

While the truncated multipliers have a more favorable area-Fortunately, we have provided a model that can accurately
to-error profile, one drawback in their use is that they requiestimate the area and error of each node within the datapath.
the full precision of both operands to be present at the inputsWith these measurements and optimization “moves”, we can
the multiplier. This has the effect of requiring higher precisiontilize simulated annealing [11] to choose how to use our
on upstream computations, possibly negating the area gpalette of optimizations to achieve an efficient implementation
at a particular instance of a multiplier by requiring largearea under a user-specified error constraint. We have developed

Automatically Optimized Matrix Multiply
T T T T

an automated approach using simulated annealing principles 1 ‘ ‘ T o
similar to those found in [12] to area-optimize a dataflow al 7
graph. Simulated annealing has shown to produce good results
on often intractable problems, and is a good candidate for our 7
design challenge.

The possible moves in our system are the various opti-
mization methods. At each temperature we choose randomly
between altering the amount of zero-substitution at the inputs
and changing multiplier structures. Our cost function for
determining the quality of moves is determined by the area
estimate of the entire datapath combined with a user-specified .l
error constraint. This error constraint is identified as an error
range at a particular node, dubbed the error node. Our cost
function is defined in (4), whererror is the absolute value of R e S]
the difference between the maximum error and the target error Normalized Error
at the error node. We have determined through experimentation Fig. 13.
that 5 = 0.25 gives a good balance between an area efficient
implementation and meeting the error constraint.

)

5
T

Normalized Area
IS
T

131

Optimized results for matrix multiply.

4) the implementation. The starting points we have used in our
experiments are truncating zero, one, and two bits from every
When modifying an input, we allow the annealer to rannput. These can be seen in Figs. (13-18) as the “Basic
domly choose to increase or decrease the number of bBitsincation” points on the plots.
substituted with constants by one bit. Thus, an ingyd, From these initial estimates of area and error, we performed
can move toAz0; or A40s. the automated optimization using these points as guidelines
When modifying the structure of a multiplier, we randomlyor error constraints. The flexibility of our methods allows us
choose a multiplier and adjust its degree of truncation. As with choose any error constraint, giving us far more area/error
the inputs, we allow the annealer to increase or decreasepygfiles to consider for implementation. As can be seen in
one the number of columns truncated from the partial produbie plots, the automated optimization method is able to obtain
array. This allows a smooth transition from the traditional arrdyetter area/error tradeoffs than the basic truncation method,
multiplier to a highly-truncated multiplier. except in a few cases in the wavelet transform and 1-D discrete
After the move has been completed, we perform a greedgsine transform. We attribute this to the need for further
renormalization. Recalling from previous sections, there amaning of some of the parameters in our simulated annealing
several instances where the effect of renormalization can &lgorithm. In particular, tuning thg parameter to adjust the
achieved without an area impact. For each adder that mayvieeighting of meeting the error constraint vs. obtaining an area-
renormalized without area penalty, we perform renormalizefficient datapath. In the future, perhaps this parameter could
tion and observe the impact on the error node of interest. The influenced by the user.
adder that exhibits the most reduction in maximum error at Careful observation will note a difference in performance
the error node through renormalization is renormalized. Thietween Figs. (15,16) and Figs. (17,18). In the experiments for
process is repeated until either our list of candidate addéhe latter figures, we performed a slightly different experiment
is exhausted, or there can be no error improvement throughdetermine whether or not our tool would be able to more
renormalization. After the annealer has finished, we optionakggressively optimize a single “precision critical path” in a
apply active renormalization at the error node if it yields aircuit. In both the CORDIC and DCT, there were several
lower overall implementation cost. output nodes to be considered. In our experiments for (17,18),
we only constrained the error on one output node. From the
VII. EXPERIMENTAL RESULTS plots it can be seen that the tool was able to maintain the
We have implemented our automated optimization tecHesired precision at the output nodes of interest while finding
niques as a subset of our design-time tool presented in [More area efficient implementations. This type of optimization
To test the effectiveness of our methodologies, we have usgth be very useful when the developer is aware of varying

our technique to optimize several benchmark image processffifjrees of precision required at the outputs.
kernels. These include a matrix multiply, wavelet transform,

CORDIC, and a one-dimensional discrete cosine transform. VIII. CONCLUSIONS AND FUTURE WORK

A typical use of our methods would begin with the user We have described and motivated the need to investigate
performing basic truncation. As mentioned before, while basiice optimization of the least-significant bit position. In order
truncation does afford an area savings throughout the datap#thgdo so, we have proposed models of area and error for an
there is very little guidance as to which inputs to manipulataejternative area reduction technique to straight truncation—
and how changes might affect the overall performance obnstant substitution. Using this method and models, we have

cost = B xarea + (1 —) x error

Automatically Optimized CORDIC
2.4 T T

Automatically Optimized Wavelet Transform ' —©- Optimized
14 T T T . x__Basic Truncation
—©- Optimized
*__Basic Truncation
22r 7
2r 4
x
1.2 4 «
]
181 7
3 °
< 3
[—E x S 161 7
]
z
1k 4 1.4 7
1.2 7
1 I I I I
))))) x 0 5 10 15 20 25 30
0.8 N
0 20 40 60 80 100 120 Normalized Error

Normalized Error

Fig. 17. Optimized results for CORDIC, single output selected for optimiza-
Fig. 14. Optimized results for wavelet transform. tion.

Automatically Optimized 1-D DCT
T

1.9 T T T
—©- Optimized
Automatically Optimized CORDIC (All Outputs Optimized) x__Basic Truncation
14 T T T T T L 4
—©- Optimized 8
x__Basic Truncation
1.7 q
13k i 1.6 q
s
4
< 1.5F q
3
]
s i)
< €14l * 4
3 1.
B2k B z
g
<] 131 4
z
1.2r q
11k q
11r- q
1
0 1 20
Normalized Error
0 2 4 6 8 10 12 14 16 18
Normalized E
ormalized Error Fig. 18. Optimized results for 1-D discrete cosine transform, single output

. - . selected for optimization.
Fig. 15. Optimized results for CORDIC, all outputs optimized.

proposed several optimization techniques aimed at giving
_ the developer more control over the area-to-error tradeoff
during datapath precision optimization that would not be
available if simple truncation were used. We have proposed
techniques for area-efficient renormalization, allowing us to
more effectively capture our intuitive notion of error. We have
introduced the use of alternative arithmetic structures, such
as the truncated multiplier, in datapath optimization. Finally,
i x] we have implemented our techniques in an automated tool
that is able to optimize a datapath subject to a user-supplied
M 7 error constraint. More importantly, our techniques and tools
give the user a broader range of options to consider, as well
1" 1 as a mechanism to achieve specific area/error targets when
« performing implementations.
03, - - - - - - - . In future work, we will incorporate more optimizations to
Normalized Error further expand the design space. We will implement more
Fig. 16. Optimized results for 1-D discrete cosine transform, all outpu%f the renormahza,tlon te(,:hmques presented her.e In our auto-
optimized. mated tool. This will require a more comprehensive renormal-
ization routine that will attempt the transformations that may

Automatically Optimized 1-D DCT (All Outputs Optimized)
T T T T

141 q

Normalized Area

increase the cost of a design. We hope to incorporate further al-
ternative structures, such as floating-point and pseudo-floating-
point to allow for high-precision (and high-area) portions of
the datapath to be realized.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

REFERENCES

M. L. Chang and S. Hauck, “Bcis: A design-time precision analysis
tool,” in IEEE Symposium on Field-Programmable Custom Computing
Machines 2002, pp. 229-238.

M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with
application to silicon compilation,” inProceedings of the SIGPLAN
conference on Programming Language Design and Implemen;diiore
2000.

M. W. Stephenson, “Bitwise: Optimizing bitwidths using data-range
propagation,” Master's thesis, Massachusetts Institute of Technology,
May 2000.

W. Sung and K.-I. Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systenlSEE Trans-
actions on Signal Processingol. 43, no. 12, pp. 3087-3090, December
1995.

S. Kim, K.-I. Kum, and W. Sung, “Fixed-point optimization utility for
C and C++ based digital signal processing programs¥Vorkshop on
VLSI and Signal Processin@saka, 1995.

A. Nayak, M. Haldar.et al, “Precision and error analysis of MATLAB
applications during automated hardware synthesis for FPGABEsign
Automation & TestMarch 2001.

G. A. Constantinides, P. Y. Cheung, and W. Luk, “The multiple
wordlength paradigm,” inlEEE Symposium on Field-Programmable
Custom Computing Maching2001.

Y. Lim, “Single-precision multiplier with reduced circuit complexity
for signal processing applicationdEEE transactions on Computers
vol. 41, no. 10, pp. 1333-1336, October 1992.

M. J. Schulte and J. Earl E. Swartzlander, “Truncated multiplication with
correction constant,” ifVLSI Signal Processing VI, IEEE Workshop on
VLSI Signal Processingdctober 1993, pp. 388-396.

K. E. Wires, M. J. Schulte, and D. McCarley, “FPGA resource reduction
through truncated multiplication,” irProceedings of the 11th Inter-
national Conference on Field Programmable Logic and Applications
August 2001, pp. 574-583.

S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealingSciencevol. 220, no. 4598, pp. 671-680, May 13
1983.

V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” ifProceedings of the Seventh International
Workshop on Field-Programmable Logic and Applicatiod897, pp.
213-222.

