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Abstract 

Currently, few tools exist to aid the FPGA developer in 
translating an algorithm designed for a general-purpose-
processor into one that is precision-optimized for FPGAs. 
This task requires extensive knowledge of both the 
algorithm and the target hardware. We present a design-
time tool, Précis, which assists the developer in analyzing 
the precision requirements of algorithms specified in 
MATLAB. Through the combined use of simulation, user 
input, and program analysis, we demonstrate a 
methodology for precision analysis that can aid the 
developer in focusing their manual precision optimization 
efforts. 

 

1. Introduction 

One of the most difficult tasks in implementing an 
algorithm in an FPGA-like substrate is dealing with 
precision issues. Typical general-purpose processor 
concepts such as word size and data type are no longer 
valid in the FPGA world, which is dominated by finer-
grained computational structures, such as look-up tables. 
Instead, the designer must use and implement bit-precise 
data paths. 

More specifically, in a general-purpose processor, 
algorithm designers can typically choose from a 
predefined set of variable types that have a fixed word 
length. Examples of these predefined types are the C data 
types such as char, int, float, double. These data 
types correspond to specific memory storage sizes, and 
subsequently, into different ways of handling operations 
upon these memory locations within the microprocessor. 
Much of the work of padding, word-boundary alignment, 
and operation selection is hidden from the programmer by 
compilers and assemblers, which make the use of one data 
type equally easy as another. 

In contrast, an FPGA does not have predefined data 
widths for its data path. Instead, designers must provide 
all the structures necessary to handle operations on 
different data widths and types. Therefore, it is paramount 

that FPGA designers implement their algorithms such that 
they utilize resources efficiently and accurately. Too many 
bits allocated to a particular operation is wasteful, while 
too few can result in erroneous output. 

The difficulty is in the translation of an initial 
algorithm into one that is precision-optimized for FPGAs. 
This task requires extensive knowledge of both the 
algorithm and the target hardware. Unfortunately, there 
are few tools that aid the would-be FPGA developer in 
this translation. In this paper, we discuss our work in 
filling that gap by introducing a developer-oriented tool 
for the design-time analysis of the impact of precision on 
algorithm implementation. 

2. Background 

Currently, the typical tool flow for development of an 
FPGA-targeted algorithm is as shown in Figure 1. 
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Figure 1. Typical tool flow for implementing a high level 
language specified algorithm on an FPGA. 

At the head of the development chain is the algorithm. 
Often, the algorithm under consideration has been 
implemented in some high-level language, such as 
MATLAB, C, or Java, targeted to run on a general 
purpose processor, such as a workstation or desktop 
personal computer. The most compelling reason to utilize 
a high level language running on a workstation is that it 
provides infinite flexibility and a comfortable, rich 
environment in which to rapidly prototype algorithms.  Of 
course, the reason one would convert this algorithm into a 
hardware implementation is to gain considerable 



 

advantages in terms of speed, size, and power. 
This tool flow requires the developer to first convert a 

software prototyped algorithm into a hardware 
description. From this hardware description language 
(HDL) specification, various stages and intermediate tools 
are used to perform simulation and generate target 
bitstreams, which are then executed on reconfigurable 
logic. As mentioned earlier, one of the more difficult steps 
in implementing the algorithm in hardware is highlighted 
in Figure 1 with a dashed arrow – the conversion from a 
high-level software language, such as C, Java, or 
MATLAB, into an HDL description. 

A simple conversion without precision analysis would 
most likely yield an unreasonably large hardware 
implementation. For example, by blindly choosing a fixed 
32-bit data path throughout the system, the developer may 
encounter two problems: wasted area and incorrect results. 
The former arises when the actual data the algorithm 
operates upon does not require the full 32-bit data path. In 
this case, much of the area occupied by the oversized data 
path could be pruned. There are several benefits to area 
reduction of a hardware implementation: reduced power 
consumption, reduced critical path delay, and the 
increased probability of parallelism by freeing up more 
room on the device to perform other operations 
simultaneously. On the other hand, the latter case occurs 
when the algorithm actually requires more precision for 
some data sets than the 32-bit data path provides. In this 
case, the results obtained from the algorithm could 
potentially be incorrect due to unchecked overflow or 
underflow conditions. 

Therefore, within the HDL description, it is important 
that the developer determine more accurate bounds on the 
data path. Typically, this involves running a software 
implementation of the algorithm with representative data 
sets and performing manual fixed-point analysis. At the 
very least, this requires the re-engineering of the software 
implementation to record the ranges of variables 
throughout the algorithm. From these results, the 
developer could infer candidate bit-widths for their 
hardware implementation. Even so, these methods are 
tedious and often error-prone. 

Unfortunately, while many of the other stages of 
hardware development have well-developed tools to help 
automate difficult tasks, few tools can automate HDL 
generation from a processor-oriented higher level 
language specification. And while there are C-to-
Verilog[1] and C-to-VHDL[2] tools in existence, they do 
not offer such “designer aids” that would help with 
precision analysis of existing algorithms implemented in a 
high level language. 

3. Précis 

In order to fill this void in hardware development tools, 
we are developing Précis, a design-time precision analysis 

tool. Précis utilizes MATLAB as an input specification for 
algorithms and is designed to interact with the developer 
in order to assist them in making the best choices 
regarding data path precision. Currently, Précis aids the 
developer by providing a constraint propagation engine, 
simulation support, range finding capabilities, and 
performing precision slack analysis. 
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Figure 2. Précis’ role in the tool chain. 

Précis is designed to complement the existing tool flow 
in the manner shown in Figure 2. Précis is not meant to be 
an HDL generator, a MATLAB-to-HDL converter, or an 
optimizing compiler of any sort. Instead, it is meant to 
provide a convenient way for the user to interact with the 
algorithm under consideration. Our goal is for the 
knowledgeable user, after interacting with our tool, to 
have a much clearer idea of the precision requirements of 
their data path. It is our belief that the developer of the 
algorithm, with suitable software assistance, can perform 
much better precision analysis and optimization than a 
fully automated tool could ever achieve. In the following 
sections, we describe in more detail the constituent parts 
of Précis. 

3.1. MATCH front-end 

The front-end of Précis comes from Northwestern 
University in the form of a modified MATCH 
compiler[3,4]. The MATCH compiler understands a 
subset of the MATLAB language and can transform it into 
efficient implementations on FPGAs, DSPs, and 
embedded CPUs. It is used here primarily as a pre-
processor to parse MATLAB codes. The MATCH 
compiler was chosen as the basis for the MATLAB code 
parsing because no official grammar is publicly available 
for MATLAB. We are not constrained to using the 
MATCH compiler, though, as our tool may be updated to 
accommodate an alternate MATLAB-aware parser. 

MATLAB was chosen as the target high level language 
because the researchers involved in this work also 
contribute to the MATCH project at Northwestern 
University. From this work, it has become clear that 
MATLAB is a strong favorite for algorithm prototyping 



 

and exploration, especially among scientists that might 
have little to no hardware design expertise. With the 
proliferation of reconfigurable co-processor boards 
capable of providing great speedups to many classes of 
algorithms, it would be advantageous to provide tools to 
help these same scientists target their MATLAB 
algorithms to FPGAs. Précis can be used both by 
developers prototyping in MATLAB before hand 
converting to an HDL, or to develop pragmas (designer 
hints) for MATCH’s automatic compilation. 

The MATCH compiler remains a work in progress and 
is currently being marketed by AccelChip[5]. For our 
purposes, we have modified the base MATCH compiler to 
generate a non-hierarchical (flattened) representation of 
parsed MATLAB code from its internal abstract syntax 
tree. This representation is then read into the main Précis 
tool for display and user interaction. 

3.2. Précis application 

The main Précis application is written in Java, in part, 
due to its relative platform independence and ease of 
graphical user interface creation. Précis takes the parsed 
MATLAB code output generated from the MATCH 
compiler and displays a GUI that formats the code into a 
tree-like representation of statements and expressions. An 
example of the GUI in operation is shown in Figure 3. The 
left half of the interface is the tree representation of the 
MATLAB code. The user may click on any node and, 
depending on the node type, receive more information in 
the right panel. The right panel displayed in the figure is 
an example of the entry dialog that allows the user to 
specify fixed-point precision parameters, such as range 
and type of truncation. With this graphical display the user 
can then perform the various tasks described in the 
following sections. 

 

Figure 3. Screen capture of the Précis GUI. 

3.3. Propagation engine 

A core component of the Précis tool is a constraint 

propagation engine. The propagation engine simulates the 
effects of using fixed-point numbers and fixed-point math 
in hardware. This is done by allowing the user to 
(optionally) constrain variables to a specific precision by 
specifying the bit positions of the most significant bit 
(MSB) and least significant bit (LSB). Variables that are 
not manually constrained begin with a default width of 64 
bits. Typically, a user should be able to provide 
constraints easily for at least the circuit inputs and outputs. 

The propagation engine traverses the expression tree 
and determines the resultant ranges of each operator 
expression from its child expressions. This is done by 
implementing a set of rules governing the change in 
resultant range that depend upon the input operand(s) 
range(s) and the type of operation being performed. For 
example, in the statement a=b+c, if b and c are both 
constrained by the user to a range of 2^15 to 2^0, 16 
bits, the resulting output range of a would have a range of 
2^16 to 2^0, 17 bits, as an addition conservatively 
requires one additional high order bit for the result in the 
case of a carry-out from the highest order bit. Similar 
rules apply for all supported operations. 

The propagation engine works in this fashion across all 
statements of the program, recursively computing the 
precision for all expressions in the program. This form of 
propagation is often referred to as value-range 
propagation. One shortcoming of the currently 
implemented propagation engine is that it does not handle 
loop carried variables or conditional branches. This is to 
be rectified in later revisions of the tool. A more complete 
study of propagation and its effects upon hardware 
synthesis can be found in [6]. We plan to continue 
development of our own propagation tool to a similar 
extent in the near future. 

An example of forward and backward propagation is 
depicted in Figure 4 
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Figure 4. Simple propagation example. 

In this trivial example, assume the user sets all input 
values (a, b, c) to utilize the bits [15,0], i.e. have a range 
from 2^16-1 to 0. Forward propagation would result in 
x having a bit range of [16, 0] and c having a range of 
[31, 0]. If, after further manual analysis, the user notes 
that the output from these statements should be 
constrained to a range of [10, 0], backwards propagation 
following forward propagation will constrain the inputs (c 
and x) of the multiplication to [10, 0] as well. Propagating 
yet further, this constrains the input variables a and b to 



 

the range [10, 0] as well. Obviously, these are very 
conservative propagation values. Knowing strict values 
for the variables would increase our accuracy, as can be 
shown in [6]. 

The propagation engine can be used to get a quick 
estimate of the growth rate of variables through the 
algorithm. This is done by constraining the precision of 
input variables and a few operators and performing the 
propagation. This will allow the user to see a conservative 
estimate of how the input bit width affects the size of 
operations down stream. 

While the propagation engine will provide some 
information as to the effects of fixed-point operations on 
the resultant data, it is at best a conservative estimate. It 
would be appropriate to consider the bit widths 
determined from the propagation engine to be worst-case 
results, or in other words, an upper bound. This upper 
bound will become useful in further analysis phases of 
Précis. 

3.4. Simulation support 

As previously mentioned, a typical step in precision 
analysis is the actual running of the algorithm in a fixed-
point environment. Précis can automatically generate 
annotated MATLAB code to aid in fixed-point simulation 
of the user’s algorithm. The user simply selects variables 
to constrain and requests that MATLAB simulation code 
be generated. The code generated by the tool includes 
calls to MATLAB helper functions that we developed to 
simulate a fixed-point environment. The simulation flow 
is shown in Figure 5. 
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Figure 5. Code generation for simulation. 

In particular, a MATLAB support routine, “fixp” was 
developed to simulate a fixed-point environment. Its 
declaration is fixp(x,m,n,lmode,rmode), where 
‘x’ denotes the signal to be truncated to ‘(m-n+1)’ bits 
in width. Specifically, ‘m’ denotes the MSB bit position 
and ‘n’ the LSB bit position, inclusively, with negative 
values representing positions to the right of the decimal 
point. The remaining two parameters, ‘lmode’ and 
‘rmode’ specify the method desired to deal with overflow 
at the MSB and LSB portions of the variable, respectively. 
These modes correspond to different methods of hardware 
implementation. Possible choices for ‘lmode’ are sat 
and trunc—saturation to 2^(MSB+1)-1 and 
truncation of all bits above the MSB position, 
respectively. For the LSB side of the variable, there are 
four modes, round, trunc, ceil, and floor. Round 
rounds the result to the nearest integer, trunc truncates 

all bits below the LSB position, ceil rounds up to the 
next integer level, and floor rounds down to the next 
lower integer level. These modes correspond exactly to 
the MATLAB functions with the exception of trunc, 
and thus behave as documented by Mathworks. Trunc is 
accomplished through the modulo operation. An example 
of output generated for simulation is shown in Figure 6. 

a = 1;
b = 2;
c = 3;
d = (a+(b*c));

a=1;
b=2;
c=3;
d=(fixpp(a,12,3,’trunc','trunc')+

(b*c));

MATLAB Input Annotated MATLAB

Figure 6. Sample output generated for simulation, with 
the range of a variable constrained. 

After the user has constrained the variables of interest 
and indicated the mechanism by which to control 
overflow of bits beyond the constrained precision, Précis 
can generate annotated MATLAB. The user can then run 
the generated MATLAB code with real data sets. The 
purpose of these simulations is to determine the effects of 
constraining variables on the correctness of the 
implementation. Not only might the eventual output be 
erroneous, but the algorithm may also fail to operate 
entirely due to the effects of precision constraints. 

If the user finds the algorithm’s output to be 
acceptable, they might consider constraining additional 
key variables, thereby further reducing the eventual size 
of the hardware circuit. On the other hand, if the output 
generates unusable results, the user knows then that their 
constraints were too aggressive and that they should 
increase the precision of some of the constrained 
variables. Note that it is typically not sufficient to merely 
test whether the fixed precision results are identical to the 
unconstrained precision results, since this is too 
restrictive. In situations such as image processing, lossy 
compression, and speech processing, users may be willing 
to trade some result quality for a more efficient hardware 
implementation. Précis, by being a designer assistance 
tool, allows the designer to create their own “goodness” 
function, and make this tradeoff as they see fit. With the 
Précis environment, this iterative development cycle is 
shortened, as the fixed-point simulation code can be 
quickly generated. 

3.5. Range finding 

While the simulation support described above is very 
useful on its own for fixed-point simulation, it is only 
truly useful if the user can accurately identify the 
variables that they feel can be constrained. If the user does 
not really have an idea of where to begin, one place to 
start is utilizing the Précis range finding capability. The 
development cycle utilizing range finding is shown in 



 

Figure 7. 
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Figure 7. Development cycle for range finding analysis. 

After the MATLAB code is parsed into the tool, the 
user can select variables they are interested in monitoring. 
Variables are targeted for range analysis and annotated 
MATLAB is generated, much like the simulation code is 
generated in the previous section. Instead of fixed-point 
simulation, though, Précis annotates the code with another 
MATLAB support routine that monitors the range of the 
values that the variables under question take on. 

This support routine, ‘rangefind’, monitors the 
maximum and minimum values attained by the variables. 
The annotated MATLAB is run with some sample data 
sets to gather range information on the variables under 
consideration. The user can then save these values in data 
files that can be fed back into Précis with another routine, 
‘saverangefind’. Example range finding output is 
shown in Figure 8. 

a = 1;
b = 2;
c = 3;
d = (a+(b*c));

a=1;
b=2;
c=3;
d=(a+(b*c));
rangeFind(d,'rfv_d');

MATLAB Input Range Finding Output

 

Figure 8. Sample range finding output. 

The user then loads the resultant range values 
discovered by rangefind back into the Précis tool and 
(optionally) constrains the variables. The user now has an 
idea of what precision each variable requires for the 
sample data. Propagation can now be performed to 
determine the effect these precisions have on the rest of 
the system. Another useful step that the user can perform 
is to constrain the variables under question even further 
and perform a simulation to see how much error it 
introduces into the output. The results from this range 
finding method, however, are data set dependent. If the 
user is not careful to use representative data sets, the final 
hardware implementation could still generate erroneous 
results if the data sets were significantly different in 
precision requirements, even on the same algorithm. 

For this reason we will consider range-gathered 
precision information to be somewhat of a lower bound. 
Given that the precisions obtained from propagation are 

conservative estimates, or an upper bound, manipulating 
the difference between these two bounds leads us to 
another method of precision analysis—slack analysis. 

4. Slack analysis 

One of the goals of this tool is to provide the user with 
“hints” as to where the developer’s manual precision 
analysis and hardware tuning efforts should be focused. 
Ultimately, it would be extremely helpful for the 
developer to be given a list of “tuning points” in 
decreasing order of potential overall reduction of circuit 
size. This way, the developer could start a hardware 
implementation using more generic data path precision 
and iteratively optimize code sections that would give 
them the most benefit to meet constraints, such as time, 
cost, area, performance, or power. We believe this type of 
“tuning list” would give a developer a head start on 
precision analysis and put them on the right path of 
development faster than non-automated techniques. 

As mentioned earlier, if the user performs range 
finding analysis and propagation analysis on the same set 
of variables, the tool would obtain what would amount to 
a lower bound from range analysis and an upper bound 
from propagation. We consider the range analysis a lower 
bound because it is the result of true data sets. While other 
data sets may require even lower amounts of precision, we 
know we need at least the ranges gathered from the range 
analysis. Further testing with other data sets may show 
that some variables would require more precision. Thus, if 
we implement the design with the precision found, we 
might encounter errors on output, thus the premise that 
this is a lower bound. 

On the other hand, propagation analysis is very 
conservative. For example, in the statement a=b+c, 
where b and c have been constrained to be 16 bits wide 
by the user, the resultant bit width of a may be up to 17 
bits due to the addition. But in reality, both b and c may 
be well within the limits of 16 bits and an addition might 
never overflow into the 17th bit position. For example, if 
c=λ-b, the range of values a could ever take on is 
governed by λ. To a person investigating section of code, 
this seems very obvious when c is substituted into 
a=b+c, but these types of more “macroscopic” 
constraints in algorithms can be difficult or impossible to 
find automatically. It is because of this that we can 
consider propagated range information to be an upper 
bound. 

Given a lower and upper bound on the bit width of a 
variable, we can consider the difference between these 
two bounds to be the slack. The actual precision 
requirement is most likely to lie between these two 
bounds. Manipulating the precision of nodes with slack 
can net gains in precision system-wide, as changes in any 
single node may impact many other nodes within the 



 

circuit. The reduction in precision requirements and the 
resultant improvements in area, power, and performance 
can be considered gain. Through careful analysis of the 
slack at a node, we can calculate how much gain can be 
achieved by manipulating the precision between these two 
bounds. Additionally, by performing this analysis 
independently for each node with slack, we can generate 
an ordered list of “tuning points” that the user should 
consider. 

For this paper, we consider the reduction of the area 
requirement of a circuit to be gain. In order to compute the 
gain of a node with respect to area, power and 
performance, we need to develop basic hardware models 
to capture the effect of precision changes upon these 
parameters. One simple implementation that we have 
utilized is to provide simple weighting parameters for 
different operator types. Thus, for example, if an adder 
has an area model of x, it indicates that as the precision 
decreases by one bit, the area reduces linearly and the gain 
increases linearly. In contrast, a multiplier has an area 
model of x^2, indicating that the area reduction and gain 
achieved are proportional to the square of the word size. 
Intuitively, this would give a higher overall gain value for 
bit reduction of a multiplier than of an adder. Using these 
parameters, our approach can more effectively choose the 
nodes with the most possible gain to suggest to the user. 
We detail our methodology in the next section. 

4.1. Performing slack analysis 

The goal of slack analysis is to identify which nodes, 
when constrained by the user, are likely to have the 
greatest impact upon the overall circuit area. While we do 
not believe it is realistic to expect users to constrain all 
variables, most users would be able to consider how to 
constrain a few “controlling” values in the circuit. 

Our method seeks to efficiently use designer time by 
guiding them to the next important variables to consider 
for constraining. Précis can also provide a stopping 
criterion for the user: we can measure the maximum 
possible benefit from future constraints by constraining all 
variables to their lower bounds. The user can then decide 
to stop further investigation when the difference between 
the current and “lower bound” areas is no longer worth 
further optimization. 

Our methodology is straightforward. For each node 
that has slack, we set the precision to the range-find value, 
the lower bound. Then, we propagate the impact of that 
change over all nodes and calculate the overall gain for 
the change, system-wide. We record this value as the 
effective gain as a result of modifying that node. We then 
reset all nodes and repeat for the remaining nodes that 
have slack. We then order the resultant list of gain values 
in decreasing order and present this information to the 
user in a dialog window. The user then can see which 
nodes to change to get the highest gain and in what order. 

It is then up to the designer to consider these nodes and 
determine which, if any, should actually be more tightly 
constrained. 

To further illustrate this analysis method, refer to the 
pseudo-code shown below. 

Algorithm: Slack Analysis 
User Step #1: Constrain known variables 
User Step #2: Perform propagation 
User Step #3: Load range data for some set of variables 
‘n’ 
 
set list_of_gains to empty list 
for each variable ‘m’ in ‘n’  
  set aggregate_gain = 0 
  constrain range of ‘m’ to the range analysis value 
  perform forward and reverse propagation over all 
variables 
  for all variables 
    if range of variable is narrower than range originally 
propagated in ‘User Step #2 
      set aggregate_gain += old_area – new_area 
    end 
  next 
  add (variable ‘m’ and aggregate_gain) to list_of_gains 
  for all variables 
    reset range of variable to range originally propagated in 
‘User Step #2’ 
  next 
next 
 
sort(list_of_gains) by decreasing aggregate_gain 

5. Benchmarks 

In order to determine the effectiveness of our slack 
analysis methodology, we allowed the tool to perform 
slack analysis with propagated and range-found range 
values. To gauge how effective the suggestions were, we 
constrained the variables the tool suggested in the order 
they were suggested to us, and calculated the resulting 
area. The area was determined utilizing the same area 
model discussed in previous sections, i.e. giving adders a 
linear area model while multipliers are assigned an area 
model proportional to the square of their input word size. 
We also determined an asymptotic lower bound to the 
area by implementing all suggestions simultaneously to 
determine how quickly our tool would converge upon the 
lower bound. 

5.1. Wavelet Transform 

The first benchmark we present is the wavelet 
transform. The wavelet transform is a form of image 
processing, primarily serving as a transformation prior to 
applying a compression scheme, such as SPIHT[8]. A 
typical discrete wavelet transform runs a high-pass filter 
and low-pass filter over the input image in one dimension. 



 

The results are down sampled by a factor of two, 
effectively spatially compressing the wavelet by a factor 
of two. The filtering is done in each dimension, vertically 
and horizontally for images. Each pass results in a new 
image composed of a high-pass and low-pass sub-band, 
each half the size of the original input stream. These sub-
bands can be used to reconstruct the original image.  

This algorithm was hand-mapped to hardware as part 
of work done by Thomas Fry[8]. The hardware utilized 
was a WildStar FPGA board from Annapolis 
Microsystems consisting of three Xilinx Virtex 2000E 
FPGAs and 48 MBytes of memory. Significant time was 
spent converting the floating-point source algorithm into a 
fixed-point representation by utilizing methodologies 
similar to those we present in this paper. The result was an 
implementation running at 56MHz, capable of 
compressing 8-bit images at a rate of 800Mbits/sec. This 
represents a speedup of nearly 450 times as compared to a 
software implementation running on a Sun SPARCStation 
5. 

The wavelet transform was implemented in MATLAB 
and passed into Précis. In total, 27 variables were selected 
to be constrained. These variables were then marked for 
range-finding analysis and annotated MATLAB code was 
generated. This code was then run in the MATLAB 
interpreter with a sample image file (Lena) to obtain range 
values for the selected variables. These values were then 
loaded into Précis to obtain a lower bound to be used 
during the slack analysis phase. The results of the slack 
analysis are shown in Figure 9. 
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Figure 9. Wavelet area vs. number of suggestions 
implemented. 

These results are normalized to the lower bound 
obtained by setting all variables to their lower bound 
constraints and computing the resulting area. This graph 
shows that between the upper bound and lower bound, 
there is a theoretical area difference of about three orders 
of magnitude. The slack analysis results suggested 
constraining the output image array, then the low and high 
pass filter coefficients, and then the results of the 

additions in the multiply-accumulate structure of the 
filtering operation. By taking the suggested moves in 
order and recomputing the order at each step, we were 
able to reach with ten percent of the lower bound area of 
the system in eleven moves. Perhaps more importantly, 
the tool was able to suggest a pattern of moves that would 
allow us to reach within a factor of three from the lower 
bound in just four moves. Finally, by about thirteen 
moves, the normalized area was within less than three 
percent of the lower bound, and further improvements 
were negligible. At this point a typical user may choose to 
stop optimizing the system. 

It is important to note that the area values obtained by 
Précis are simply calculated by reducing the range of a 
number of variables to their range-found lower bounds. 
This yields what could be considered the “best-case” 
solution when optimizing. In reality, though, one would 
add another step to the development cycle whereby upon 
choosing the variable for optimization as suggested by the 
tool, the developer would perform an intermediate 
simulation step to determine if, by lowering the precision 
requirements of that variable, any error would be 
introduced in the results. This step is made easier by the 
automatic generation of annotated simulation code for use 
in MATLAB. In many cases, there might be an intolerable 
amount of error introduced by utilizing the lower bound, 
in which case the user would choose an appropriate 
precision range, fix that value as a constraint upon that 
variable in Précis and continue utilizing the slack analysis 
phase to find the next variable for optimization.  

5.2. Probabilistic Neural Network: PNN 

Another benchmark we investigated was a multi-
spectral image-processing algorithm designed for NASA 
satellite imagery that is similar to clustering analysis or 
image compression. More details can be found in [7]. 
Briefly, each multi-spectral image pixel vector is 
compared to a set of “training pixels” or “weights” that 
are known to be representative of a particular class.  The 
probability that the pixel under test belongs to the class 
under consideration is given by the formula depicted in 
Equation 1. 
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Equation 1. The core PNN formula. 

Here, X
r

 is the pixel vector under test, kiW
r

is the 

weight i  of class k , d is the number of spectral bands, 
k  is the class under consideration, σ  is a data-dependent 

“smoothing” parameter, and kP  is the number of weights 

in class k .  This formula represents the probability that 



 

pixel vector X
r

 belongs to the class kS .  This 

comparison is then made for all classes and the class with 
the highest probability indicates the closest match. 

This algorithm was manually implemented on a 
WildChild board and described in [7]. The WildChild 
board from Annapolis Microsystems consists of eight 
Xilinx 4010E FPGAs, a single Xilinx 4028EX FPGA, and 
5MBytes of memory. Like the wavelet transform 
described earlier, significant time and effort was spent on 
variable range analysis, with particular attention being 
paid to the large multipliers and the exponentiation 
required by the algorithm. This implementation obtained 
speedups of 16 versus a software implementation on an 
HP workstation.  

The algorithm was implemented in MATLAB and 
passed into Précis. From here, twelve variables were 
selected for range finding analysis, annotated MATLAB 
was generated, range-analysis was performed, and slack 
analysis was run utilizing the derived lower and upper 
bounds. 

Again, all results were normalized to the lower bound 
area. As shown in Figure 10, the tool behaved similarly to 
the wavelet benchmark in that it was able to reach within 
five percent of the lower bound within six moves, where 
after additional moves serve to make only minor 
improvements in area. However, with the PNN algorithm, 
we are able to demonstrate even further refinement of the 
slack analysis approach. 
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Figure 10. PNN area vs. number of suggestions 
implemented utilizing only range-analysis-discovered 

values. 

For a seasoned developer that has a deeper insight into 
the algorithm, or for one that already has an idea of how 
the algorithm would map to hardware, the range-analysis 
phase sometimes returns results that are sub-optimal. For 
example, the range-analysis of the PNN algorithm upon a 
typical dataset resulted in several variables being 
constrained to ranges such as [2^0,2^-25], [2^8,2^-135], 
[2^0,2^-208], and so on. This simply means that the 

range-finding phase discovered values that were 
extremely small and thus recorded the range as requiring 
many bits to the right of decimal point to capture all the 
precision information. The shortcoming of the automated 
range-analysis is that it has no means by which to 
determine at what precision values become too small to 
affect follow-on calculations, and therefore might be 
considered unimportant. With this in mind, the developer 
would typically restrict the variables to narrower ranges 
that preserve the correctness of the results while requiring 
fewer bits of precision. 

Précis provides the functionality to allow the user to 
make these decisions in its annotated MATLAB code 
generation. In this case, the user would choose a narrower 
precision range and a method by which to constrain the 
variable to that range consistent with how they will be 
implementing the operation in hardware—truncation, 
saturation, rounding, or any of the other methods 
presented in previous sections. Then, the developer would 
generate annotated MATLAB code for simulation 
purposes, and re-run the algorithm in MATLAB with 
typical data sets. This would allow the user to determine 
how narrow of a precision range would be tolerable, and 
subsequently constrain the variables in Précis accordingly. 
The user can perform this determination either during 
slack analysis, or prior to beginning slack analysis. 

There are two types of scenarios that may occur 
depend primarily on the experience level of the developer. 
With a developer that has not dealt with precision analysis 
and software to hardware mappings extensively, it may be 
that they wouldn’t notice the unreasonable range 
information obtained by the range-finding analysis phase 
until the variable was suggested for optimization by the 
tool. For this case, the user would perform an appropriate 
simulation of the variable at that stage of the slack 
analysis and obtain tighter bounds. On the other hand, for 
a more experienced hardware designer that has 
encountered precision analysis before, they might look 
closely at the range-finding results prior to running the 
slack analysis. In this case, they would most likely run 
simulations and find more reasonable precision ranges for 
the variables in question, and constrain them before even 
beginning the slack analysis phase. 

The results for these two scenarios are shown plotted 
together in Figure 11, normalized to the lowest bound 
among all three approaches. To differentiate the three 
methods, the first proposed method is shown as “simple”, 
and is the same method used to plot the results for the 
wavelet benchmark. The “user guided” method refers to 
fixing the variables during slack analysis. Finally, the 
“start constrained” method denotes fixing the variables in 
question prior to starting slack analysis. 
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Figure 11. PNN area with user-defined variable 
precision ranges. Moves that had variables constrained to 

more reasonable ranges are highlighted with arrows. 

At first glance, one can see that all three methods 
provide similar trends, approaching the lower bound 
within five to seven moves. This behavior is expected and 
is consistent with the results of the wavelet benchmark. 
However, one might expect that the start-constrained and 
user-guided methods would reach near the lower bound 
more quickly than the simple method. Instead, they take 
one or two additional moves to get near the lower bound 
compared to the simple method. This can be explained by 
understanding how the tool performs propagation across 
variables whose ranges are constrained by the user. By 
fixing the range of a variable, neither forward nor 
backward propagation will alter their precision ranges. In 
effect, we trust the user’s decision when they fix a 
variable’s precision range. The net effect is that any gains 
that might have been realized through back-propagation of 
smaller ranges will not be achieved if they must propagate 
through a variable whose range has been fixed. Finally, as 
the method used to compute the order of variables to 
constrain is greedy by nature, changing the order in which 
constraints are applied will alter the curve slightly. 

6. Related work 

While there have been several recent research efforts 
targeting precision analysis, none have approached it in 
such an interactive fashion. As mentioned in previous 
sections, Mark Stephenson and Jonathan Babb’s work 
developing the Bitwise compiler at MIT [6] is an excellent 
foundation work regarding precision propagation 
techniques. They have applied their techniques in the 
SUIF compiler infrastructure and are targeting the C 
language for silicon compilation. 

Anshuman Nayak’s work at Northwestern University 
[9] is very relevant to our own research, as it is based 
upon the same MATCH compiler framework as our own. 
This work utilizes a similar propagation engine within the 
MATCH compiler as optimization phases and attempts to 

perform all analysis, including error, automatically, 
generating RTL VHDL suitable for synthesis. 

Two other research efforts, one at the University of 
Southern California and one at Imperial College in 
London, approach the precision matter in an entirely 
different way. Kiran Bondalapati’s work on dynamic 
precision management of loop computations [10] 
concentrates on developing a formal methodology for 
analyzing the precision requirements of loop structures. 
Finally, George A. Constantinides, et. al. have developed 
a Synoptix-based system for the analysis and automated 
generation of DSP applications[11]. 

7. Conclusions 

In this paper we have demonstrated the need for 
precision analysis tools in the development cycle of 
software to hardware mapping. To direct the developer’s 
efforts in hand-optimizing the precision of algorithms 
mapped to hardware, we have developed and 
demonstrated a tool, Précis, which allows the user to 
automate many tasks necessary for effective precision 
analysis. We have demonstrated how our tool can aid the 
developer in simulation of fixed-point math with 
automatic annotated MATLAB code generation. We have 
also developed MATLAB scripts that support range 
analysis of a user’s MATLAB code in order to deduce a 
theoretical lower bound to the precision of selected 
variables. We have also presented a framework for 
propagation of precision range information over a 
MATLAB program. Finally, we have described our 
methodology of slack analysis, and have shown how the 
suggestions provided by this methodology can be helpful 
in guiding the user in their manual precision optimization 
on real-world benchmarks.  
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