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Abstract

Variable Precision Analysis for FPGA Synthesis

by Mark L. Chang

Chair of Supervisory Committee:

Professor Scott Hauck
Electrical Engineering

FPGAs and reconfigurable computing platforms have become popular solutions for

applications requiring high speed and reprogrammability. Yet developing for these

platforms requires hardware design knowledge to exploit their full potential. In partic-

ular, retargeting algorithms conceived and prototyped on general-purpose processors

for hardware devices often requires shifting from a floating-point arithmetic paradigm

into a fixed-point one. Analyzing the tradeoffs between area consumption, algorithmic

precision, output error, and overall circuit performance when making this paradigm

shift is a difficult, time-consuming, and error-prone task with little to no assistive tool

support.

This dissertation details my research in enabling an easier transition from floating-

point to fixed-point arithmetic for FPGAs. This includes a detailed background on

FPGAs, an in-depth discussion of precision analysis and data path optimization,

a review of past and current precision analysis research efforts, and motivation for

my contribution to research in this area. We also present Précis, a novel user-centric

precision optimization tool that serves as a software vehicle to demonstrate and verify

our methodologies.
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Chapter 1

INTRODUCTION

The proliferation of the personal computer has revolutionized the average per-

son’s ability to perform calculations and computations. The relative ease with which

a general-purpose processor can be programmed and reprogrammed is in part re-

sponsible for this revolution. Software, as the name suggests, is almost infinitely

flexible, allowing general-purpose processor-based machines to perform almost any

computational task.

However, even today’s powerful computers cannot be used for every application.

Often, a combination of criterion such as cost, performance, power consumption, and

size, dictate the use of custom hardware, known as Application Specific Integrated

Circuits (ASICs). Unfortunately, in most cases, the design, testing, and fabrication of

an ASIC is out of reach, both in terms of expertise as well as cost. Even if the developer

did not face these obstacles, an ASIC is application specific by nature, meaning it is

inherently fixed-function silicon designed solely to perform a fixed number of functions

while fitting within some set of criterion. Regardless, this is a tradeoff many systems

have to make in order to meet performance constraints.

In recent years, reconfigurable hardware devices have matured to a point that

they pose a challenge to the ASIC along many evaluation axes. Reconfigurable hard-

ware has been a growing area of research in both industry and academia, promising

high speed, high throughput, low power consumption, and infinite reprogrammabil-
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ity. They essentially offer hardware that is both flexible like software, and as fast as

hardware, a tantalizing combination.

At the heart of many reconfigurable hardware platforms is the field-programmable

gate array, or FPGA [11,12,71]. The most popular type of FPGA is the “island-style”

FPGA, which is a regular fabric of interconnected reprogrammable computational

units whose interconnection fabric is also reprogrammable. Typical computational

units consist of some number of lookup tables into which boolean equations can be

mapped, and a state-holding element, such as a flip-flop. These units have their inputs

and outputs routed to an interconnection fabric that connects every individual “cell”

together, forming a two-dimensional mesh. The lookup table contents and the control

for the interconnection switching points are both controlled by static-RAM, meaning

that an entire FPGA’s configuration—and therefore its function—can be quickly and

infinitely reprogrammed, much like a memory.

Even though an FPGA obviates the need to fabricate a custom chip for every

unique set of tasks, the FPGA is still a hardware device that requires hardware

design expertise, methodologies, and tools. The design prerequisites for FPGAs are

often very similar to designing ASICs. Perhaps the most striking difference between

developing software versus hardware is that developers must think spatially as well

as procedurally. The performance of a circuit (on an FPGA or in ASIC form) is

strongly influenced by the physical layout and size of the circuits that perform the

computation. Consequently, the area consumed by an implementation is a critical

design consideration.

One important design tradeoff is in the widths of the data paths within a circuit.

Unlike general-purpose processors, where data-type primitives such as char, int,

and float provide abstractions of data path width, a hardware device like an FPGA

works at the single-bit level. The developer can tune data paths to any word size

desired, a level of customization that software developers rarely consider. The ability

to tune data paths can result in complications; if too much width is allocated to the
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data path and the computational elements along that data path, the area requirements

increase, potentially increasing delay and power consumption, which decreases overall

performance. On the other hand, reduction of the data path width and computational

elements can be taken too far, introducing excessive errors in the output due to

hardware behaviors such as overflow, roundoff, saturation, and truncation.

This paradigm shift in arithmetic and number format becomes an obstacle when

taking an algorithm originally prototyped in software on a general-purpose processor

and implementing it in hardware on an FPGA. The conversion from an infinite-

precision conception of an algorithm utilizing floating-point arithmetic to the fixed-

point arithmetic world of an FPGA is difficult. Unfortunately, this critical design task

is addressed by few, if any, commercial tools that otherwise assist in this translation

and implementation.

The work presented in this dissertation describes methodologies, practices, and

tools for effective precision analysis to assist in the conversion from floating-point

arithmetic into fixed-point arithmetic destined for implementation in a hardware de-

vice such as an FPGA. This dissertation is organized as follows:

• Chapter 2: Field-Programmable Gate Arrays provides technical background on

common FPGA architectures and design methodologies.

• Chapter 3: Precision Analysis motivates the problem of precision analysis and

describes previous research efforts in this area.

• Chapter 4: Most-Significant Bit Optimization describes a technique and tool

for optimizing the position of the most-significant bit of a data path.

• Chapter 5: Least-Significant Bit Optimization compliments Chapter 4 and de-

scribes a novel technique for optimizing the position of the least-significant bit.
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• Chapter 6: Conclusions and Future Work concludes this dissertation and presents

directions for future work.



5

Chapter 2

FIELD-PROGRAMMABLE GATE ARRAYS

The FPGA is an increasingly popular device in reconfigurable systems. As the

technology has matured, gate capacity has increased and costs have been reduced,

allowing FPGAs to become useful and cost-effective in a wider variety of applications.

This chapter will provide a technical background of FPGAs and common FPGA

architectures, as well as insight into the intricacies of developing for FPGAs.

2.1 Architecture

By far the most popular architectural style for current FPGAs is the island-style

lookup table-based FPGA. This architecture, depicted in Fig. 2.1, uses logic blocks

(islands) that are tiled in a two-dimensional array and connected together through

an interconnection network. The logic blocks are the computational medium within

the FPGA fabric, while the interconnection network serves to route signals between

cells. Both the function performed in the logic block and the routing of signals

in the interconnection fabric are programmable. In most FPGAs destined for the

consumer market, the programming mechanism is a static-RAM (SRAM) bit, each

of which controls various multiplexers and switch blocks, providing quick and infinite

reprogrammability. The aggregate of all the SRAM bits required to program an entire

FPGA is called the configuration memory.

A typical FPGA logic block consists of a number of lookup tables into which

boolean equations are mapped, and a state holding element, such as a flip-flop. An

n-input lookup table (LUT), or an n-LUT, is simply a 2n memory that is programmed



6

Figure 2.1: Typical island-style FPGA routing structure

with a truth table for the desired function. The use of lookup tables ensures gener-

ality, as any combinational digital circuit can be decomposed into a series of boolean

equations that can then be expressed as a truth table. The presence of a state holding

element allows the FPGA to implement sequential circuits as well as function as a

rudimentary memory by aggregating several FPGA logic block resources together.

Connecting logic block inputs and outputs together is an interconnection fabric.

This network can be simple, allowing only nearest-neighbor connections (Fig. 2.2), or

more complex, with multiple switched routing channels and a hierarchical structure

(Fig. 2.1, adapted from [24]).

In the more complex routing structure shown in Fig. 2.1, the inputs and outputs

of logic blocks are connected to the general routing fabric through a connection block.

This connection block utilizes programmable switch points to connect a particular in-

put/output node of the logic block to a routing channel within the interconnection

fabric. The switch boxes then allow the signals to travel to different parts of the
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Figure 2.2: Simple nearest-neighbor routing [77]

FPGA, switching between different routing channels and resources, and turning cor-

ners. This routing structure is more flexible from an architectural standpoint, and is

more typical of commercial FPGAs.

2.2 Case Study: The Xilinx Virtex-II FPGA

The architectural details described thus far have been very simple in nature and

do not adequately describe the complexity and enhanced functionality present in

modern FPGAs. To give an idea of how these basic models have been built upon

by commercial FPGA vendors, consider the Xilinx Virtex-II [81], a good example

of a modern island-style FPGA. The Virtex-II architecture is a lookup table-based

FPGA utilizing a hierarchical interconnect structure. While the basic functional unit

remains a lookup table, it is often useful to group logic and routing resources into

hierarchical levels for abstraction purposes.
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Configurable Logic Blocks (CLBs)
The Virtex-II configurable logic blocks (CLB) are organized
in an array and are used to build combinatorial and synchro-
nous logic designs. Each CLB element is tied to a switch
matrix to access the general routing matrix, as shown in
Figure 14. A CLB element comprises 4 similar slices, with
fast local feedback within the CLB. The four slices are split
in two columns of two slices with two independent carry
logic chains and one common shift chain.
 

Slice Description
Each slice includes two 4-input function generators, carry
logic, arithmetic logic gates, wide function multiplexers and
two storage elements. As shown in Figure 15, each 4-input
function generator is programmable as a 4-input LUT, 16
bits of distributed SelectRAM memory, or a 16-bit vari-
able-tap shift register element. 

The output from the function generator in each slice drives 
both the slice output and the D input of the storage element. 
Figure 16 shows a more detailed view of a single slice.

Configurations

Look-Up Table

Virtex-II function generators are implemented as 4-input
look-up tables (LUTs). Four independent inputs are pro-
vided to each of the two function generators in a slice (F and
G). These function generators are each capable of imple-
menting any arbitrarily defined boolean function of four
inputs. The propagation delay is therefore independent of
the function implemented. Signals from the function gener-
ators can exit the slice (X or Y output), can input the XOR
dedicated gate (see arithmetic logic), or input the carry-logic
multiplexer (see fast look-ahead carry logic), or feed the D
input of the storage element, or go to the MUXF5 (not
shown in Figure 16). 

In addition to the basic LUTs, the Virtex-II slice contains
logic (MUXF5 and MUXFX multiplexers) that combines
function generators to provide any function of five, six,
seven, or eight inputs. The MUXFX are either MUXF6,
MUXF7 or MUXF8 according to the slice considered in the
CLB. Selected functions up to nine inputs (MUXF5 multi-
plexer) can be implemented in one slice. The MUXFX can
also be a MUXF6, MUXF7, or MUXF8 multiplexers to map
any functions of six, seven, or eight inputs and selected
wide logic functions.

Register/Latch

The storage elements in a Virtex-II slice can be configured
either as edge-triggered D-type flip-flops or as level-sensi-
tive latches. The D input can be directly driven by the X or Y
output via the DX or DY input, or by the slice inputs bypass-
ing the function generators via the BX or BY input. The clock
enable signal (CE) is active High by default. If left uncon-
nected, the clock enable for that storage element defaults to
the active state.

In addition to clock (CK) and clock enable (CE) signals,
each slice has set and reset signals (SR and BY slice
inputs). SR forces the storage element into the state speci-
fied by the attribute SRHIGH or SRLOW. SRHIGH forces a
logic “1” when SR is asserted. SRLOW forces a logic “0”.
When SR is used, a second input (BY) forces the storage
element into the opposite state. The reset condition is pre-
dominant over the set condition. (See Figure 17.)

The initial state after configuration or global initial state is
defined by a separate INIT0 and INIT1 attribute. By default,
setting the SRLOW attribute sets INIT0, and setting the
SRHIGH attribute sets INIT1.

For each slice, set and reset can be set to be synchronous
or asynchronous. Virtex-II devices also have the ability to
set INIT0 and INIT1 independent of SRHIGH and SRLOW.

The control signals clock (CLK), clock enable (CE) and
set/reset (SR) are common to both storage elements in one
slice. All of the control signals have independent polarity. Any
inverter placed on a control input is automatically absorbed. 

Figure 14:  Virtex-II CLB Element

Figure 15:  Virtex-II Slice Configuration 
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Figure 2.3: Xilinx Virtex-II Configurable Logic Block (CLB) [81]

2.2.1 Virtex-II Logic Resources

The largest hierarchical block is the Xilinx Configurable Logic Block (CLB), shown

in Fig. 2.3. This block is the basic logic tile or logic cell of the Virtex-II FPGA.

Several of these CLBs are organized in an array to form the core of the logic resources

of the device. Tied to a switch matrix to access the general routing fabric, each CLB

consists of four smaller “slices” with fast local routing.

Each Virtex-II slice (Fig. 2.4) contains two 4-input lookup tables, miscellaneous

gates and multiplexers, two storage elements, and fast carry logic. As the diagram

illustrates, the lookup tables can be configured and accessed in three different ways,

including: 4-input LUT, 16 bits of memory, or a 16-bit variable-tap shift register

element. The extra multiplexers (MUXFx and MUXF5 in Fig. 2.4) allow a single

slice to be configured for wide logic functions of up to eight inputs. A handful of extra

gates are present in each slice to provide additional functionality. These include: an

XOR gate to allow a 2-bit full adder to be implemented within a single slice, an AND

gate to improve multiplier implementations, and an OR gate to facilitate efficient



9

Virtex™-II Platform FPGAs: Detailed Description
R

DS031-2 (v2.1.1) December 6, 2002 www.xilinx.com Module 2 of 4
Advance Product Specification 1-800-255-7778 13

Configurable Logic Blocks (CLBs)
The Virtex-II configurable logic blocks (CLB) are organized
in an array and are used to build combinatorial and synchro-
nous logic designs. Each CLB element is tied to a switch
matrix to access the general routing matrix, as shown in
Figure 14. A CLB element comprises 4 similar slices, with
fast local feedback within the CLB. The four slices are split
in two columns of two slices with two independent carry
logic chains and one common shift chain.
 

Slice Description
Each slice includes two 4-input function generators, carry
logic, arithmetic logic gates, wide function multiplexers and
two storage elements. As shown in Figure 15, each 4-input
function generator is programmable as a 4-input LUT, 16
bits of distributed SelectRAM memory, or a 16-bit vari-
able-tap shift register element. 

The output from the function generator in each slice drives 
both the slice output and the D input of the storage element. 
Figure 16 shows a more detailed view of a single slice.

Configurations

Look-Up Table

Virtex-II function generators are implemented as 4-input
look-up tables (LUTs). Four independent inputs are pro-
vided to each of the two function generators in a slice (F and
G). These function generators are each capable of imple-
menting any arbitrarily defined boolean function of four
inputs. The propagation delay is therefore independent of
the function implemented. Signals from the function gener-
ators can exit the slice (X or Y output), can input the XOR
dedicated gate (see arithmetic logic), or input the carry-logic
multiplexer (see fast look-ahead carry logic), or feed the D
input of the storage element, or go to the MUXF5 (not
shown in Figure 16). 

In addition to the basic LUTs, the Virtex-II slice contains
logic (MUXF5 and MUXFX multiplexers) that combines
function generators to provide any function of five, six,
seven, or eight inputs. The MUXFX are either MUXF6,
MUXF7 or MUXF8 according to the slice considered in the
CLB. Selected functions up to nine inputs (MUXF5 multi-
plexer) can be implemented in one slice. The MUXFX can
also be a MUXF6, MUXF7, or MUXF8 multiplexers to map
any functions of six, seven, or eight inputs and selected
wide logic functions.

Register/Latch

The storage elements in a Virtex-II slice can be configured
either as edge-triggered D-type flip-flops or as level-sensi-
tive latches. The D input can be directly driven by the X or Y
output via the DX or DY input, or by the slice inputs bypass-
ing the function generators via the BX or BY input. The clock
enable signal (CE) is active High by default. If left uncon-
nected, the clock enable for that storage element defaults to
the active state.

In addition to clock (CK) and clock enable (CE) signals,
each slice has set and reset signals (SR and BY slice
inputs). SR forces the storage element into the state speci-
fied by the attribute SRHIGH or SRLOW. SRHIGH forces a
logic “1” when SR is asserted. SRLOW forces a logic “0”.
When SR is used, a second input (BY) forces the storage
element into the opposite state. The reset condition is pre-
dominant over the set condition. (See Figure 17.)

The initial state after configuration or global initial state is
defined by a separate INIT0 and INIT1 attribute. By default,
setting the SRLOW attribute sets INIT0, and setting the
SRHIGH attribute sets INIT1.

For each slice, set and reset can be set to be synchronous
or asynchronous. Virtex-II devices also have the ability to
set INIT0 and INIT1 independent of SRHIGH and SRLOW.

The control signals clock (CLK), clock enable (CE) and
set/reset (SR) are common to both storage elements in one
slice. All of the control signals have independent polarity. Any
inverter placed on a control input is automatically absorbed. 

Figure 14:  Virtex-II CLB Element

Figure 15:  Virtex-II Slice Configuration 
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Figure 2.4: Xilinx Virtex-II Slice [81]

implementation of sum-of-products chains. Finally, the storage elements in each slice

can be configured as either edge-triggered D-type flip-flops or level-sensitive latches.

2.2.2 Virtex-II Routing Resources

Connecting the CLB logic resources together is a hierarchical interconnect structure.

These routing resources are located in horizontal and vertical routing channels be-

tween each switch matrix as depicted in Fig. 2.5, with details of the routing structure

removed for clarity. The CLBs access the general routing fabric through the “Switch

Matrix” boxes in Fig. 2.5. The blocks annotated IOB, DCM, and SelectRAM are

beyond the scope of this dissertation, with more details being available in [81]. The

actual nature of the interconnection fabric is shown in more detail in Fig. 2.6.
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Active Interconnect Technology
Local and global Virtex-II routing resources are optimized for speed and timing predictability, as well as to facilitate IP cores
implementation. Virtex-II Active Interconnect Technology is a fully buffered programmable routing matrix. All routing
resources are segmented to offer the advantages of a hierarchical solution. Virtex-II logic features like CLBs, IOBs, block
RAM, multipliers, and DCMs are all connected to an identical switch matrix for access to global routing resources, as shown
in Figure 47. 

Each Virtex-II device can be represented as an array of switch matrixes with logic blocks attached, as illustrated in Figure 48. 

Figure 47:  Active Interconnect Technology

Figure 48:  Routing Resources
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Figure 2.5: Xilinx Virtex-II global routing channels [81]

Much more flexible than the nearest-neighbor routing structure previously de-

picted in Fig. 2.2, the Virtex-II has a rich, hierarchical routing structure. The routing

resources shown in Fig. 2.6 consist of:

• Long lines that span the full height and width of the device

• Hex lines that route to every third or sixth block away in all four directions

• Double lines that route to every first or second block away in all four directions

• Direct connect lines that route to all immediate neighbors

• Fast connect lines internal to the CLB, routing LUT outputs to LUT inputs

Finally, the Virtex-II has a number of routing resources dedicated to global clock

nets, on-chip buses, fast carry chains, sum-of-products chains, and shift-chains. These

dedicated resources free the general routing fabric from these more specific tasks.
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Place-and-route software takes advantage of this regular
array to deliver optimum system performance and fast com-
pile times. The segmented routing resources are essential
to guarantee IP cores portability and to efficiently handle an

incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.

Hierarchical Routing Resources
Most Virtex-II signals are routed using the global routing
resources, which are located in horizontal and vertical rout-
ing channels between each switch matrix. 

As shown in Figure 49, Virtex-II has fully buffered program-
mable interconnections, with a number of resources
counted between any two adjacent switch matrix rows or
columns. Fanout has minimal impact on the performance of
each net.

• The long lines are bidirectional wires that distribute 
signals across the device. Vertical and horizontal long 
lines span the full height and width of the device.

• The hex lines route signals to every third or sixth block 
away in all four directions. Organized in a staggered 
pattern, hex lines can only be driven from one end. 
Hex-line signals can be accessed either at the endpoints 
or at the midpoint (three blocks from the source).

• The double lines route signals to every first or second 
block away in all four directions. Organized in a 
staggered pattern, double lines can be driven only at 
their endpoints. Double-line signals can be accessed 
either at the endpoints or at the midpoint (one block 
from the source).

• The direct connect lines route signals to neighboring 
blocks: vertically, horizontally, and diagonally.

• The fast connect lines are the internal CLB local 
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.

• There are eight global clock nets per quadrant (see 
Global Clock Multiplexer Buffers).

• Horizontal routing resources are provided for on-chip 
3-state busses. Four partitionable bus lines are 
provided per CLB row, permitting multiple busses 
within a row. (See 3-State Buffers.) 

• Two dedicated carry-chain resources per slice column 
(two per CLB column) propagate carry-chain MUXCY 
output signals vertically to the adjacent slice. (See 
CLB/Slice Configurations.) 

Figure 49:  Hierarchical Routing Resources
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Figure 2.6: Xilinx Virtex-II routing detail [81]

In this brief description of the Virtex-II, several details have been omitted that

are beyond the scope of this dissertation. More information is available in [81].

2.3 Performance Potential of FPGAs

Motivating the use of FPGAs in a wide variety of applications is the potential for

great speedup compared to software implementations at a relatively low cost when

compared to ASIC implementations. Like an ASIC, FPGA designs are built to exactly

match the computational requirements of an algorithm. These designs do not have the

overhead of performing instruction fetch and decode as in a processor, and can exploit

simple, regular, and parallel computations to yield high performance. Unlike an ASIC,

each FPGA design does not need to be separately fabricated. Rather, the FPGA is

reconfigured with the design of a new algorithm, greatly reducing fabrication delay
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and costs. Some examples of how FPGAs have been used to yield high performance

are given in this section.

An image classification algorithm was accelerated by a factor of 16 versus an HP

Unix workstation in [15, 16]. The SPIHT algorithm, a wavelet coding scheme, im-

plemented on an FPGA platform in [36, 37], achieved a speedup of over 450 times

versus a Sun Sparcstation 5 software implementation. Encryption algorithms are also

good candidates for acceleration. In [30] the authors show that an FPGA imple-

mentation of the Rijndael encryption algorithm achieved an 11.9x speedup versus a

500MHz software implementation described in [39]. Code breaking can also benefit

from FPGA devices as [72] demonstrates performance approximately 60 times that

of a 1.5GHz Pentium 4 for an RC4 key search. Finally, the authors of [21] imple-

ment a two-dimensional finite-difference time-domain (FDTD) algorithm to model

electromagnetic space and obtain a speedup of 24 compared to a 3.0GHz Pentium 4.

FPGAs have clearly demonstrated the ability to outperform their software and

general-purpose processor counterparts on a wide variety of algorithmic classes. They

often do so at a low cost in terms of price as well as power consumption compared

to a workstation. As with custom hardware and ASICs, the larger hurdle to their

adoption is the development cycle.

2.4 Developing for FPGAs

With the hardware in place, the motivation clear, and the algorithm at hand, de-

velopers need to create programs that can take advantage of FPGA resources. As

the FPGA is programmed through the setting of a configuration memory, the ac-

tual programming information is simply a series of bits that define the configuration

memory—commonly referred to as a configuration bitstream.

As an FPGA is a hardware device, the algorithms and applications take the form

of circuits. At the lowest level the designer hand maps the desired circuit into the
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target hardware. To do this, the designer evaluates each circuit element and its in-

terconnection with other circuit elements, and derives the correct bits to configure

the logic blocks and routing resources on the FPGA to implement these circuit el-

ements. These bits together form the bitstream that is then used to program the

FPGA. Quite clearly, this manual approach is difficult, time consuming, error prone,

and scales poorly for large circuits. This path of development is rarely used now;

aside from overwhelming difficulty, it requires intimate knowledge of the exact FPGA

architecture, information that remains a closely guarded secret of commercial FPGA

vendors.

Fortunately, as with integrated circuit (ASIC) development, tools exist to aid the

developer in producing a bitstream with less manual labor and less detailed knowl-

edge of the target hardware. These tools most often utilize a hardware description

language (HDL) to specify the circuits to be implemented. A hardware description

language is very similar to general-purpose processor programming languages in that

it takes a human-readable description of a program and transforms it, through several

steps, into something usable by the target platform. Whereas software programming

languages such as C/C++ and Java generate a stream of instructions for a processor,

the HDL tool chain generates a bitstream for an FPGA.

At the lowest level of abstraction, the developer provides a structural description

of the circuit. Structural HDL specifies the target circuit using a library of building

blocks supplied by the tool vendor. These building blocks are typically gates and

storage elements that may be further abstracted into larger components such as adders

and multipliers. While still a very manual approach, this first level of abstraction is

one that many developers utilize in order to perform high levels of optimization to

best utilize FPGA resources.

Structural HDL tool chains are available for most commercial FPGAs. It is a

widely used method for generating efficient implementations as there are fewer levels

of abstraction between the circuit description and the actual hardware generated.
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The drawback of structural HDL is that it is more difficult to use than methods with

higher levels of abstraction, especially when building complex circuits, because every

component, input, and output, must be explicitly specified.

Further abstraction is possible through the use of behavioral HDL. Behavioral

HDL is closer to conventional general-purpose software development in that it allows

the designer to describe the desired program flow using more abstract data types than

gate primitives, control and conditional statements, subroutines, and other familiar

programming language constructs that define behavior as well as structure. Through

a process called synthesis, the behavioral description is transformed into an equivalent

structural description for further processing.

Up until this point in the development cycle, the specified circuits are technol-

ogy independent—abstract in the sense that they can use any type of general logic

elements. The next step in the tool chain is the technology mapper. The technol-

ogy mapper transforms a technology independent description of the circuit into a

technology dependent one by mapping the general circuit structures onto the specific

resources within the fabric of the target FPGA. For LUT-based FPGAs, technology

mapping generally consists of partitioning the target circuit into pieces small enough

to be mapped into a lookup table. The result of the technology mapper is called a

netlist. A netlist simply describes the FPGA resources required and how they are

connected.

After mapping is complete, the resultant netlist must be placed and routed on

the target FPGA. In the placement phase, each FPGA logic resource listed in the

technology-dependent netlist is assigned to a specific physical FPGA resource. After

placement of all the elements of the netlist, the routing phase determines exactly

which physical routing resources are used to route the required signals between logic

blocks. The particular algorithms and mechanisms by which these two steps are

accomplished are beyond the scope of this dissertation. However, the references cited

in this chapter provide sufficient background material.



15

Through the synthesis and place-and-route phases, the behavioral description is

transformed into an equivalent circuit that can be run on the target FPGA. The be-

havioral HDL method requires the least amount of target FPGA hardware knowledge

and pushes much of the responsibility of circuit generation onto the vendor-supplied

tools. Fortunately, these tools do a reasonable job in achieving high-performance

implementations of algorithms in FPGA hardware.

As an aside, an even higher level of abstraction is attainable through the use of

compiler technologies that can generate structural and behavioral HDL from higher-

level programming languages, such as C and C++. Some examples of these tools

are described in [14, 35, 40, 70]; however their details will not be discussed in this

dissertation.

Behavioral HDL has gained popularity as the effective number of gates on an

FPGA reaches into the millions. With such high gate counts, it is becoming less

feasible to use any of the more time-consuming methods described above to do full

circuit implementation. Most developers utilize a behavioral specification to get an

initial implementation, and use their knowledge of the target FPGA hardware along

with structural HDL to optimize subsections to meet performance requirements. In

this research, we target users of behavioral HDL for precision analysis of FPGA

designs.

This brief introduction to FPGAs and FPGA architectures is sufficient to un-

derstand the context of the work in this dissertation. However, a more general and

thorough survey of FPGAs and reconfigurable computing can be found in [24].
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Chapter 3

PRECISION ANALYSIS

FPGAs are a viable alternative to both software implementations running on work-

stations and custom hardware in the form of ASICs. FPGAs can achieve hardware-like

speeds while remaining reprogrammable, a feature typically reserved for software sys-

tems. While FPGAs are most certainly a high-performance implementation medium

for many applications, developing and prototyping on a software platform remains

simpler and less time-consuming. In many cases, hardware use is simply a necessity

due to constraints that software platforms cannot meet.

3.1 The Hardware/Software Divide

Often times, algorithms and applications are prototyped in software in a high-level de-

sign environment such as MATLAB, Simulink, Java, or C/C++. These environments

are comfortable, familiar, and provide a wealth of tools—high-level design tools, edi-

tors, compilers, performance analysis tools, automatic optimizers, debuggers, etc.—to

aid in the development cycle. When an application fails to meet a particular con-

straint, such as power consumption, deployment cost, size, or speed, a hardware

implementation should be considered. For example, DVD video encoding in MPEG-2

may perform the encoding procedure in real time on a workstation. Even if the work-

station were fast enough to perform the encoding, it might be cost-prohibitive to sell

a solution based on a software algorithm running on a high-performance workstation.

Aside from cost, power and space requirements of the workstation solution might be

considered unreasonable for an embedded application which was meant to function
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Figure 3.1: Simple GPP model with fixed-width data paths [42]

in a consumer’s living room. For these reasons and many more, developers turn to

hardware-based solutions.

In transitioning to hardware devices, it becomes difficult to find software devel-

opers that possess equivalent skills for hardware development. Therefore, when an

algorithm or application must be implemented in a hardware device, the software

developers typically relinquish control to hardware developers. Consequently, people

who understand the algorithm best do not perform the implementation, while the

hardware implementation is performed by individuals with the least involvement in

developing the algorithm or application. This knowledge divide often leads to sub-

optimal implementations.

With the advent of FPGAs, the promise of easier-to-use hardware is only partially

realized. While hardware description languages and tools exist to aid in hardware

development, and even though FPGAs allow for hardware implementation without

the need or cost of custom silicon fabrication, hardware development essentially still

requires hardware developers. This is partly due to the fundamental differences in

the underlying computational structures between software and hardware execution.



18

3.2 Paradigm Shift

When developing software, the computational device commonly targeted is the general-

purpose processor (GPP). A very simple model of a GPP is depicted in Fig. 3.1. A

typical GPP contains fixed-width data buses and fixed-width computational units,

such as an arithmetic logic unit (ALU). The general-purpose processor is designed

to perform operations at the world level. The term “word level” refers to a quanti-

zation of storage elements into sizes of, typically, 8, 16, 32, and 64 bits. Supporting

this paradigm, programming languages and compilers for general-purpose processors

provide data type primitives that abstract these quantizations into storage classes,

such as char, int, and float. These data types, along with a supporting compiler,

abstract away the complications of using differently-sized storage elements in the

fixed-width computational structure of a GPP, such as type compatibility, boundary

alignment for arithmetic operations, packing and unpacking of large storage classes,

and others.

The presence of these abstractions has the effect of allowing software developers

to neatly ignore the problem of precision entirely. There is little benefit to using

a narrower data type when possible—such as choosing the 16-bit short data type

instead of the larger 32-bit int data type for a variable that doesn’t require a large

dynamic range—other than the possibility of a marginally reduced memory footprint

and faster execution, both of which are highly dependent upon processor architecture

and compiler actions. Ensuring correctness, however, through protecting against

overflow and underflow is often more important, and therefore using larger-than-

necessary data types is a common practice. This paradigm is even more prevalent

in higher-level programming languages such as MATLAB [56, 57], where specifying

data types is optional, and the assumed data type is the largest available—double-

precision floating point, typically 64-bits in width. This mindset of worst-case data

type selection is arguably prevalent in software designs.
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Figure 3.2: A single bit slice of a full-adder

In contrast, hardware devices such as an FPGA are bit-level devices that require

bit-exact representations of the algorithm in circuit form. Therefore, if the algorithm

requires a full-adder, a circuit such as the one shown in Fig. 3.2 needs to be con-

structed from FPGA resources. If a four-bit adder is required, it must be explicitly

constructed from one-bit full-adders as in Fig. 3.3. Of course, this is just one way

to implement adders in hardware and is meant only as an illustrative example. The

strength of FPGAs and custom hardware is that the developer can tune the data

paths to any word size desired, meeting the exact requirements of the algorithm. Un-

fortunately, this strength also exposes a difficult hurdle in hardware design: in order

to create efficient circuits, the data paths must be tuned to match the algorithm,

which is not a trivial task.

3.3 Data Path Optimization

If a näıve developer chose to emulate a general-purpose processor by selecting a wide

data path, such as 32 bits, the implementation might be very wasteful in terms of

hardware resources. The actual data propagating through the data path may never

require all the bits allocated. In this scenario, the extra data path bits programmed

into the FPGA structure would be wasted, and area would be consumed unnecessarily.

On the other hand, if the designer implements the data path using too narrow of a bit
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Figure 3.4: Example fixed-point data path

width, unacceptable levels of error may be introduced at run time through excessive

quantization effects attributed to roundoff and/or overflow.

In determining the fixed-point representation of a floating-point data path, we

must consider both the most-significant and least-significant ends. Reducing the

relative bit position of the most-significant bit reduces the maximum value that the

data path may represent, otherwise referred to as the dynamic range. On the other

end, increasing the relative bit position of the least-significant bit (toward the most-

significant end) reduces the maximum precision that the data path may attain. For

example, as shown in Fig. 3.4, if the most-significant bit is at the 27 bit position, and

the least-significant bit is at the 2−3 bit position, the maximum value attainable by an

unsigned number will be 255.875, while the precision will be quantized into multiples

of 2−3 = 0.125. Values smaller than 0.125 cannot be represented in this example data

path as the bits necessary to represent, for example, 0.0625, do not exist.

Having a fixed-point data path leads to results that may exhibit some quantity of

error compared to their floating-point counterparts. This quantization error can be

introduced in both the most-significant and least-significant sides of the data path. If

the value of an operation is larger than the maximum value than can be represented by

the data path, the quantization error is typically a result of truncation or saturation,

depending on the implementation of the operation. Likewise, error is accumulated at

the least-significant end of the data path if the value requires greater precision than

the data path can represent, resulting in truncation or round-off error. The obvious
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tradeoff to using a narrower data path is that the area impact of data path operators

is reduced, yielding smaller and perhaps faster circuits while incurring some error in

the computation.

The developer must tune the width of the data path for an acceptable amount of

error while maintaining an area efficient implementation. The decision of data path

size is one that has a great impact on overall circuit performance. This optimization

is difficult due to the intricate dependencies between data path operators. Since each

data path modification is likely to impact other data path operators in terms of area

and error, the optimization space is large.

3.4 A Design Time Problem

The developer is faced with a critical system-level design problem: for each signal

and each computation, how wide (or narrow) must the data paths be in order to

conserve area and achieve performance constraints while maintaining an acceptable

level of quantization error? This question is not often raised in software algorithm

development due to the neat abstractions afford by double-precision floating-point

arithmetic. However, in hardware development, every bit along the data path has

an impact in terms of area and error. Therefore, careful thought must be given to

the conversion of floating-point data paths into fixed-point ones when implementing

algorithms in hardware.

This multi-faceted problem traditionally had very little hardware vendor tool sup-

port. The tools supplied by the FPGA chip vendors do not provide any means to

analyze the precision requirements of an algorithm, nor do they allow the developer

to determine the effects of varying the data path precision in terms of performance

and correctness in an automated fashion.

The goal of this research is to fill the gap in design-time tools. We seek to provide

methodologies for precision analysis that would be useful to a developer at design time.
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These tools would guide the developer during the data path precision optimization

process.

3.5 Previous Research

The related work in this area can be loosely grouped into analytical approaches,

simulation-based approaches, and a hybrid of the two techniques. The approaches

can be further categorized in at least three major ways. One is by the amount of user

interaction required to perform an analysis and optimization of the data path; second

is the amount of feedback they provide to the user for their own manual data path

optimization; and third, the level of automation they achieve.

3.5.1 Analytical Approaches

M. Stephenson, et. al., introduce a compiler-based analytical approach to data path

optimization in [65, 66]. The authors implemented their compiler, Bitwise within

the SUIF compiler infrastructure [75], yielding a completely automatic approach to

bitwidth analysis. This frees the programmer from performing any manual analy-

sis. The authors have implemented various techniques to deduce bit widths within

standard C programs. These techniques include:

• Data-range propagation, forward and backward, through the program’s control

flow graph using a set of transfer functions for support operators.

• Sophisticated loop-handling techniques using closed-form solutions pioneered in

[38] to facilitate propagating through loop structures.

• Integration with the DeepC Silicon Compiler [5] to apply Bitwise to hardware

designs.

Together, the Bitwise compiler reduced logic area by 15-86%, improved clock speed

by 3-245%, and reduced power by 46-73% on a variety of benchmarks. This work
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differs from the work presented here in that it is a purely analytical approach, while

our work is a hybrid of techniques. Our work allows developers to interactively analyze

the tradeoffs between area and error when performing a hardware implementation of a

software-prototyped algorithm. This user-interactivity can allow for more aggressive

optimization than is possible in a purely analytical approach and is arguably better

suited to the naturally iterative nature of hardware development.

A similar approach is used by S. Mahlke, et. al. [55]. These researchers utilized

bitwidth analysis to optimize the hardware cost of synthesizing custom hardware from

loop nests specified in the C programming language. The authors acknowledge that

their work is of narrower scope than that of M. Stephenson, et. al., cited previously.

The bitwidth analysis in [55] consists of forward and reverse propagation of bitwidth

information performed upon an assembly-level representation of a C-language pro-

gram loop. This restriction alleviates S. Mahlke, et. al., from having to perform

many of the more complex analyses detailed in [65, 66], such as loop traversal and

pointer following. The results of this work show an average total cost reduction of

50% when compared to hardware synthesis without bitwidth optimization. As with

the work presented by M. Stephenson, et. al., [55] represents a purely analytical

approach to bitwidth analysis that does not incorporate any user-interactive opti-

mization. The work described in this dissertation is a hybrid of techniques, both

analytical and simulation based, which leverages user knowledge at design time to aid

in the optimization of data path widths.

A third analytical approach taken by A. Nayak is detailed in [59]. It is similar

to our own work in that it utilizes MATLAB as an input algorithm specification and

attempts to handle the position of both the most-significant and least-significant bits.

Their approach is to first mimic the value-range propagation of M. Stephenson [65] to

determine the position of the most-significant bit. This phase is followed by an error

analysis phase to find the level of precision needed in the data path and subsequently

the position of the least-significant bit.
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For the error analysis phase in A. Nayak’s work, the user can either specify the

amount of tolerable error in the pixels of the output image, or a default resolution

of 4 fractional bits will be assumed. This information is backwards-propagated from

the output node (assumed or explicitly defined) to obtain the required number of

fractional bits at each intermediate node in the graph.

The results show an average of five times fewer FPGA resources required and 35%

faster execution after optimization compared to unoptimized hardware. This work dif-

fers from our own in that it is, again, a purely analytical approach that makes several

assumptions on the type of algorithm being implemented (image/signal processing).

There is no opportunity for manual intervention for further or more aggressive opti-

mization, nor is there any hint from the system as to alternative implementations or

less aggressive optimizations.

Finally, Constantinides, et. al. [27, 28], concentrate on developing algorithms for

nearly fully-automatic wordlength optimization. G. Constantinides introduces the

optimization of linear time-invariant (LTI) systems through the use of error model-

ing. The optimization is first performed as a Mixed-Integer Nonlinear Programming

(MINP) problem in order to find the optimal single wordlength for all signals in the

system given an error constraint specified by the user while minimizing area estimated

using models. This phase is followed by a heuristic algorithm that further refines the

individual wordlengths based on a user-specified “goodness” function, typically signal-

to-noise ratio on the output. The approach is to greedily reduce candidate signal word

lengths by one bit until they violate the given output noise constraint. This creates

a very automated system that unfortunately is limited to only LTI systems, a small

class of problems. The authors demonstrate a 45% area reduction and up to 39%

speed increase on selected DSP benchmarks. The work presented in [25] extends

their previous efforts by using perturbation analysis to linearize non-linear data path

operators. This allows the techniques described in [27,28] to be used on non-LTI sys-
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tems. Additionally, the authors show the effect of wordlength optimization on power

reduction.

This work differs from our own in that it, like other previous work, does not

consider much of the user’s expertise within the optimization cycle. The only piece of

information the user can supply is the output error constraint. There is no mechanism

for the developer to reveal the area and error effects of modifying individual signals

and operators.

3.5.2 Simulation-Based Approaches

Departing from purely analytical approaches are the solely simulation-based approaches.

Sung, et. al. [45, 46, 67] introduced a method and tool for word-length optimization

targeting custom VLSI implementations of digital signal processing algorithms. The

initial work [50] from the group utilized an internal and proprietary VHDL-based

simulation environment. This software was subsequently released as a commercial

tool, “Fixed-Point Optimizer” [2, 68]. and further developed to target digital signal

processing algorithms written in C/C++ in [45,46,67].

Sung and Kim’s work consists of two utilities, a range estimator and the fixed-point

simulator. The range estimator utility determines statistical information of internal

signals through floating-point simulation with real (assumed typical) inputs. The

fixed-point simulator converts a floating-point program into a fixed-point equivalent

through the use of a fixed-point data class.

In discussion regarding the range estimation utility, the authors note that ana-

lytical methods used to determine the range of intermediate variables in a data path

produce very conservative estimates. Additionally, analytical methods are difficult

to use with adaptive or non-linear systems. Thus, the authors choose to focus on a

simulation-based method to estimate the ranges during actual operation of the al-

gorithm using realistic input data. In order to maintain functional equivalence with

the original floating-point C or C++ algorithm, a new data class, fSig is introduced
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that can track variable statistics. By simply replacing float types with fSig types

in the original program, one can gather range information as easily as compiling and

running the candidate program.

The statistics gathered through the use of this new data class include the summa-

tion of past values, the square of the summation of past values, the absolute maximum

value (AMax), and the number of modifications during simulation. After the simu-

lation is complete, the mean (µ) and the standard deviation (σ) are calculated from

the stored statistics and the statistical range of a fSig variable x can be estimated as

(taken from [45]):

R(x) = max{|µ(x)|+ n ∗ σ(x),AMax}, (3.1)

where n is a user specified value, typically from 4 to 16. This value of n governs

the aggressiveness of the estimation function, where larger values lead to a more

conservative estimate. As this estimation takes into account the mean value of the

variable as well as the standard deviation, it describes a range of values that the

variable will most likely fall within during the lifetime of the simulation. With the

presence of AMax, the estimation will encompass any outliers in terms of maximum

absolute value.

With the range estimator yielding a picture of how the algorithm with typical

input data behaves at each intermediate variable, it is left to the fixed-point simulation

utility to model the algorithm operating in a fixed-point environment. This is done

through the same mechanism as the range estimator: creating a new data class,

gFix that encapsulates how values behave in a fixed-point sense. Using information

gathered with the range estimator, word lengths can be explicitly set for each gFix

variable and a fixed-point simulation can be performed to gauge the impact of roundoff

and truncation error.

While the work described in [45, 46] yielded interesting C and C++ libraries,

it differs from the work presented here as it has no notion of automatic or assisted

optimization, nor does it have any methods for optimizing while minimizing hardware
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costs. It was not until [67] that any cost model was integrated to facilitate automation

of word length optimization.

In [67] a reference system is designed to be a correctness benchmark. Second,

a fixed-point performance measure is developed that can quantify the fixed-point

effects. An example they give of one such measure is a signal-to-quantization-noise

ratio (SQNR) block. This block is designed such that it returns a positive value when

the quantization effects on the output are within acceptable limits.

Combined with hardware estimation models from a commercial VLSI standard

cell library, this optimization method seeks to automatically minimize hardware cost

while maintaining a usable implementation. While the current word-lengths of the

system do not satisfy the system performance required by the evaluation block, word-

lengths are increased. The word-lengths which increase are the subject of either an

exhaustive or simple heuristic search through all signals in the system, given hardware

cost estimates.

The results on two benchmarks show that the system can effectively reduce the

total gate count cost while meeting the requirements imposed by the fixed-point per-

formance measure block. Kim and Sung’s work employs a fully automated approach,

while the work presented in this dissertation uses user-interactive as well as fully-

automated approaches. No effort is made to include the developer in the optimiza-

tion decision loop. How the system evaluates the correctness is automated through

the creation of a “goodness function” block created by the developer. This single

evaluation does not allow for a comprehensive exploration of the tradeoffs between

hardware cost and quantization error, as, in many cases, the quality of a result and

the gate cost of the implementation are inseparable metrics.

3.5.3 Hybrid Approaches

Seeing the deficiencies in using only one approach, several researchers have used a

hybrid approach to tackling the problem of data path optimization.
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In [74], W. Willems, et. al. summarize the FRIDGE project. The authors

present a tool that allows for fixed-point design utilizing an interpolative approach—

essentially blending the analytical and simulation approaches previously discussed.

The four-step interpolative approach is:

1. Local annotation

2. Fixed-point simulation

3. Interpolation

4. Fixed-point simulation

For the local annotation, new ANSI-C parameterizable fixed-point data types,

fixed and Fixed are introduced. These types provide a framework to perform fixed-

point simulation of the algorithm by simply making changes to the source algorithm.

The designer begins with a floating-point program which is then annotated with

known fixed-point information (e.g. the inputs and outputs to the system). The

information about each variable that can be passed to the simulation and interpolation

environments include range, mean, variance, maximum absolute acceptable error, and

maximum acceptable relative error. Simulation is then performed to check whether

the annotated program operates correctly and meets all design criteria when compared

to the floating-point program. If not, modifications to the annotations must be done

manually.

If the original annotations are not too aggressive, the simulation will reveal correct

behavior and move into the interpolation phase. The interpolation phase is where

an analytical approach is utilized. Through estimation using dependency analysis,

conditional structure analysis, and loop structure analysis similar in spirit to [65],

all remaining floating-point variables are converted into annotated fixed-point data

types.



30

Willems’ work is similar to ours in that it is a design time analysis that incorporates

some user input. In this case, it is only at the initial local annotation phase that the

user has any input. From that point forward, there is little chance besides the final re-

simulation phase for the user to override the deductions made during the interpolation

phase. Another crucial difference between this work and the work presented in this

dissertation is that no suggestions are made to the user outside of the automatic

interpolation phase.

Finally, R. Cmar, et. al. [23] provide possibly the closest analog to the work pre-

sented in this dissertation. Their work provides a strategy for fixed-point refinement

that utilizes both a simulation-based approach as well as an analytical approach. The

simulation, as in several other efforts, utilizes C++ overloading and custom libraries.

The analytical approach infers wordlengths of variables and operators from source

code structure, local annotations, and interpolation. This effort also introduces er-

ror monitoring for the least-significant side of the data path. Utilizing the difference

between the simulated floating- and fixed-point implementations, errors at each node

are quantified and aggregated for each signal output. This makes it easier for the

developer to see the effects of quantization error and determine if the precision opti-

mization was too aggressive. This method, like those presented before, does not make

any attempt to offer suggestions to the user as to where optimizations should take

place.

3.6 Summary

There has been a wealth of work in this area in addition to this contribution. Opti-

mization of data path widths using a range of techniques has been explored. Unfortu-

nately, few approaches offer the developer a way to use their expertise at more than

one point in the system. Few easily allow more aggressive optimizations to be profiled

in terms of area and error. Finally, the ability to automatically and accurately place
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the position of the least-significant bit is something that has been ignored except for

the brief treatments in [23,59].

In the chapters to follow we consider the optimization of the most-significant bit

position (Chapter 4) and the least-significant bit position (Chapter 5). Together,

these techniques offer a unified approach to design-time, developer-centric data path

optimization.
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Chapter 4

MOST-SIGNIFICANT BIT OPTIMIZATION

4.1 Designer-centric Automation

We begin our discussion of data path optimization with techniques for most-significant

bit position optimization. As previously mentioned, much of the existing research

focuses on fully-automated optimization techniques. While these methods can achieve

good results, it is our belief that the developer should be kept close at hand during

all design phases, as they possess key information that an automatic optimization

methodology simply cannot account for or deduce.

In order to guide an automatic precision optimization tool, a goodness function

must be used to evaluate the performance of any optimization steps. In some cases,

such as two-dimensional image processing, a simple signal-to-noise ratio (SNR) may

be an appropriate goodness function. In other cases, the goodness function may be

significantly more complex and therefore more difficult to develop. In either case,

the developer still has the burden of implementing a goodness function within the

framework of the automatic optimization tool.

By simulating a human developer’s evaluation of what is an appropriate tradeoff

between quality of result and hardware cost, the automatic optimization tool loses a

crucial resource: the knowledgeable developer’s greater sense of context in performing

a goodness evaluation. Not only is this valuable resource lost, for many classes of

applications an automatically evaluated goodness function may be difficult or even

impossible to implement. In other words, for many applications, a knowledgeable

developer may be the best, and perhaps only, way to guide precision optimization.
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Therefore, there are many instances where a fully-automatic precision optimization

tool should not or cannot be used.

In a departure from previous work utilizing fully-automatic methods, we approach

this problem by providing a “design-time” precision analysis tool that interacts with

the developer to guide the optimization of the hardware data path.

4.2 Optimization Questions

In performing manual data path optimization, one finds that the typical sequence of

steps requires answering four questions regarding the algorithm and implementation:

1. What are the provable precision requirements of the algorithm?

2. What are the effects of fixed-precision on the results?

3. What are the actual precision requirements of the data sets?

4. Where along the data path should optimizations be performed?

By repeatedly asking and answering these questions, hardware designers can nar-

row the data paths within their circuits. The tradeoffs between area consumption

and accumulated error within the computation need to be manually analyzed—a

time consuming and error prone process with little tool support.

In order to fill the gap in design-time tools that can aid in answering these pre-

cision questions, we introduce our prototyping tool, Précis. Algorithms written in

the MATLAB language serve as input to Précis. MATLAB is a very high-level pro-

gramming language and prototyping environment popular in the signal and image

processing communities. More than just a language specification, MATLAB [56, 57]

is an interactive tool that allows developers to manipulate algorithms and data sets
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to quickly see the impact of changes on algorithm output. The ease with which de-

velopers can explore the design space of their algorithms makes it a natural choice to

pair with Précis to provide a design-time precision analysis environment.

Précis aids developers by automating many of the more mundane and error-prone

tasks necessary to answer the four precision analysis questions. This is done by

providing several integrated tools within a single application framework, including: a

constraint propagation engine, MATLAB simulation support, variable range gathering

support, and a slack analysis phase. It is designed to complement the existing tool

flow at design time, coupling with the algorithm before it is translated into an HDL

description and pushed through the vendor back-end bitstream generation tools. It

is designed to provide a convenient way for the user to interact with the algorithm

under consideration. The goal is for the knowledgeable user, after interacting with

our tool and the algorithm, to have a much clearer idea of the precision requirements

of the data paths within their algorithm.

4.3 Précis

The front-end of Précis comes from Northwestern University in the form of a modified

MATCH compiler [6]. The MATCH compiler understands a subset of the MATLAB

language and can transform it into efficient implementations on FPGAs, DSPs, and

embedded CPUs. It is used here primarily as a pre-processor to parse MATLAB codes.

The MATCH compiler was chosen as the basis for the MATLAB code parsing because

no official grammar is publicly available for MATLAB. The tool is not constrained

to using the MATCH compiler, though, and may be updated to accommodate an

alternate MATLAB-aware parser.

The main Précis application is written in Java, in part, due to its relative platform

independence and ease of graphical user interface creation. Précis takes the parsed

MATLAB code output generated from the MATCH compiler and displays a GUI that
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Figure 4.1: Précis screenshot

formats the code into a tree-like representation of statements and expressions. An

example of the GUI in operation is shown in Fig. 4.1. The left half of the interface

is the tree representation of the MATLAB code. The user may click on any node

and, depending on the node type, receive more information in the right panel. The

right panel displayed in the figure is an example of the entry dialog that allows the

user to specify fixed-point precision parameters, such as range and type of truncation.

With this graphical display the user can perform the tasks described in the following

sections.

4.4 Propagation Engine

A core component of the Précis tool is a constraint propagation engine. The purpose

of the constraint propagation engine is to answer the first of the four precision-analysis

questions: what are the provable precision requirements of my algorithm? By learning



36

how the data path of the algorithm under question grows in a worst-case sense, we

can obtain a baseline for further optimization as well as easily pinpoint regions of

interest—such as areas that grow quickly in data path width—which may be impor-

tant to highlight to the user.

The propagation engine works by modeling the effects of using fixed-point numbers

and fixed-point math in hardware. This is done by allowing the user to (optionally)

constrain variables to a specific precision by specifying the bit positions of the most

significant bit (MSB) and least significant bit (LSB). Variables that are not manually

constrained begin with a default width of 64 bits. This default width is chosen because

it is the width of a double-precision floating-point number, the base number format

used in the MATLAB environment. It is important to note that a 64-bit fixed-point

value has a much narrower dynamic range than its 64-bit floating-point counterpart.

However, a default width must be chosen for variables not annotated by the user.

Typically, a user should be able to provide constraints easily for at least the circuit

inputs and outputs.

The propagation engine traverses the expression tree and determines the resultant

ranges of each operator expression from its child expressions. This is done by imple-

menting a set of rules governing the change in resultant range that depend upon the

input operand(s) range(s) and the type of operation being performed. For example,

in the statement a = b + c, if b and c are both constrained by the user to a MSB

position of 215 and a LSB position of 20, 16 bits, the resulting output range of variable

a would have a range of 216 to 20, 17 bits, as an addition conservatively requires one

additional high order bit for the result in the case of a carry-out from the highest

order bit. Similar rules apply for all supported operations.

The propagation engine works in this fashion across all statements of the program,

recursively computing the precision for all expressions in the program. This form of

propagation is often referred to as value-range propagation. An example of forward

and backward propagation is depicted in Fig. 4.2.
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Figure 4.2: Simple propagation example

In this example, assume the user sets all input values (a, b, c) to utilize the bits

[15,0], resulting in a range from 216 − 1 to 0. Forward propagation would result in x

having a bit range of [16, 0] and c having a range of [31, 0]. If, after further manual

analysis, the user notes that the output from these statements should be constrained to

a range of [10, 0], backwards propagation following forward propagation will constrain

the inputs (c and x) of the multiplication to [10, 0] as well. Propagating yet further,

this constrains the input variables a and b to the range [10, 0] as well.

The propagation engine is used to get a quick, macro-scale estimate of the growth

rate of variables through the algorithm. This is done by constraining the precision

of input variables and a few operators and performing the propagation. This allows

the user to see a conservative estimate of how the input bit width affects the size

of operations downstream. While the propagation engine provides some important

insight into the effects of fixed-point operations on the resultant data path, it forms a

conservative estimate. For example, in an addition, the propagation engine assumes

that the operation requires the carry-out bit to be set. It would be appropriate to

consider the data path widths determined from the propagation engine to be worst-

case results, or in other words, an upper bound. This upper bound, as well as the

propagation engine, will become useful in further analysis phases of Précis.
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Figure 4.3: Flow for code generation for simulation

4.5 Simulation Support

To answer the second question during manual precision analysis: “what are the effects

of fixed-precision on my results?” the algorithm needs to be operated in a fixed-point

environment. This is often done on a trial-and-error basis, as there are few high-level

fixed-point environments. To aid in performing fixed-point simulation, Précis auto-

matically produces annotated MATLAB code. The developer simply selects variables

to constrain and requests that MATLAB simulation code be generated. The code

generated by the tool includes calls to MATLAB helper functions that were devel-

oped to simulate a fixed-point environment, alleviating the need for the developer to

construct custom fixed-point blocks. The simulation flow is shown in Fig. 4.3.

In particular, a MATLAB support routine, fixp was developed to simulate a

fixed-point environment. Its declaration is

fixp(x,m,n,lmode,rmode)

where x denotes the signal to be truncated to (m− n + 1) bits in width. Specifically,

m denotes the MSB bit position and n the LSB bit position, inclusively, with negative

values representing positions to the right of the decimal point. The remaining two

parameters, lmode and rmode specify the method desired to deal with overflow at

the MSB and LSB portions of the variable, respectively. These modes correspond to

different methods of hardware implementation. Possible choices for lmode are sat

and trunc. Saturation sets the value of the variable to 2(MSB+1)− 1 while truncation
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a = 1;
b = 2;
c = 3;
d = (a+(b*c));

a=1;
b=2;
c=3;
d=(fixpp(a,12,3,’trunc','trunc')+

(b*c));

MATLAB Input Annotated MATLAB

Figure 4.4: Sample output generated for simulation, with the range of variable a
constrained

removes all bits above the MSB position. For the LSB side of the variable, there

are four modes: round, trunc, ceil, and floor. Round rounds the result to the

nearest integer, trunc truncates all bits below the LSB position, ceil rounds up to

the next integer level, and floor rounds down to the next lower integer level. These

modes correspond exactly to the MATLAB functions with the exception of trunc,

and thus behave as documented by Mathworks. Trunc is accomplished through the

MATLAB modulo operation which allows easy truncation of any unwanted higher-

order MSB-side bits. An example of output generated for simulation is shown in Fig.

4.4.

After the developer has constrained the variables of interest and indicated the

mechanism by which to control overflow of bits beyond the constrained precision,

Précis generates annotated MATLAB. The developer can then run the generated

MATLAB code with real data sets to determine the effects of constraining variables

on the correctness of the implementation.

If the developer finds the algorithm’s output to be acceptable, then constraining

additional key variables might be considered, further reducing the eventual size of the

hardware circuit. On the other hand, if the output generates unusable results, the

user knows that the constraints were too aggressive and that the width of the data

paths used by some of the constrained variables should be increased.
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During this manual phase of precision analysis, it is typically not sufficient to

merely test whether the fixed precision results are identical to the unconstrained pre-

cision results, since this is likely too restrictive. In situations such as image processing,

lossy compression, and speech processing, users may be willing to trade some result

quality for a more efficient hardware implementation. Précis, by being a designer as-

sistance tool, allows the designer to create their own “goodness” function, and make

this tradeoff as they see fit. With the Précis environment, this iterative development

cycle is shortened, as the fixed-point simulation code can be quickly generated and

executed, allowing the user to view the results and the impact of error without the

tedious editing of algorithm source code.

4.6 Range Finding

While the simulation support described above is very useful on its own for fixed-point

simulation, it is much more useful if the user can accurately identify the variables that

they feel can be constrained. This leads to the third question that must be answered

in order to perform effective data path optimization: “what are the actual precision

requirements of the data sets?” Précis helps answer this question by providing a

range finding capability that helps the user deduce the data path requirements of

intermediate nodes whose ranges may not be obvious. The development cycle utilizing

range finding is shown in Fig. 4.5.

After the MATLAB code is parsed, the user can select variables they are interested

in monitoring. Variables are targeted for range analysis and annotated MATLAB is

generated, much like the simulation code is generated in the previous section. Instead

of fixed-point simulation, Précis annotates the code with another MATLAB support

routine that monitors the values of the variables under question.

This support routine, rangeFind, monitors the maximum and minimum values

attained by the variables. The annotated MATLAB is run with some sample data
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Figure 4.5: Development cycle for range finding analysis

a = 1;
b = 2;
c = 3;
d = (a+(b*c));

a=1;
b=2;
c=3;
d=(a+(b*c));
rangeFind(d,'rfv_d');

MATLAB Input Range Finding Output

Figure 4.6: Sample range finding output

sets to gather range information on the variables under consideration. The user can

then save these values in data files that can be fed back into Précis for a further

analysis phases. An example of the annotated MATLAB is shown in Fig. 4.6.

The developer then loads the resultant range values discovered by rangeFind back

into the Précis tool and (optionally) constrains the variables. The range finding phase

has now given the user an accurate profile of what precision each variable requires

for the data sets under test. Propagation can now be performed to conservatively

estimate the effect these data path widths have on the rest of the system.
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The propagation engine and the range finding tools work closely together to al-

low the user to build a more comprehensive picture of the precision requirements of

the algorithm than either of the tools could do alone. The propagation engine, with

user-knowledge of input and perhaps output variable constraints, achieves a first-

order estimation of the data path widths of the algorithm. Using the range finding

information allows for significant refinement of this estimation; the discovered vari-

able statistics allow for narrower data path widths that more closely reflect the true

algorithmic precision requirements.

Another useful step that can be performed is to constrain variables even further

than suggested by the range-finding phase. Subsequent simulations are performed to

see if the error introduced, if any, is within acceptable limits. These simulations, as

before, are easily generated and executed within the Précis framework.

The results from this range finding method are data set dependent. If the user is

not careful to use representative data sets, the final hardware implementation could

still generate erroneous results if the data sets were significantly different in precision

requirements. Data sets that exercise the full expected range of precision (common

cases as well as extreme cases) should be used to allow the range finding phase to

gather meaningful and robust statistics.

It is useful, therefore, to consider range-gathered precision information to be a

lower bound on the precision required by the algorithm. As the data sets run have

been observed to exercise a known amount of data path width, any further reduc-

tion in the precision will likely incur error. Given that the precisions obtained from

the propagation engine are conservative estimates, or an upper bound, manipulating

the difference between these two bounds leads us to a novel method of user-guided

precision analysis—slack analysis.
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4.7 Slack Analysis

One of the goals of this work is to provide the user with “hints” as to where the

developer’s manual precision analysis and hardware tuning efforts should be focused.

This is the subject of the fourth precision analysis question: where along the data

path should I optimize?. Ultimately, it would be extremely helpful for the developer

to be given a list of “tuning points” in decreasing order of potential overall reduction

of circuit size. With this information, the developer could start a hardware imple-

mentation using more generic data path precision, such as a standard 64 or 32-bit

data path, and iteratively optimize code sections that would yield the most benefit.

Iteratively optimizing sections of code or hardware is a technique commonly used

to efficiently meet constraints such as time, cost, area, performance, or power. We

believe this type of “tuning list” would give a developer effective starting points for

each iteration of their manual optimization, putting them on the most direct path to

meeting their constraints.

Recall that if the developer performs range finding analysis and propagation anal-

ysis on the same set of variables, the tool would obtain a lower bound from range

analysis and an upper bound from propagation. We consider the range analysis a

lower bound because it is the result of true data sets. While other data sets may

require even lower amounts of precision, at least the ranges gathered from the range

analysis are needed to maintain an error-free output. Further testing with other data

sets may show that some variables would require more precision. Thus, if the design

is implemented with the precision found, we might encounter errors on output, thus

the premise that this is a lower bound.

On the other hand, propagation analysis is very conservative. For example, in

the statement a = b + c, where b and c have been constrained to be 16 bits wide

by the user, the resultant bit width of a may be up to 17 bits due to the addition.

But in reality, both b and c may be well below the limits of 16 bits and an addition
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might never overflow into the 17th bit position. For example, if c = λ − b, the

range of values a could ever take on is governed by λ. To a person investigating this

section of code, this seems very obvious when c is substituted into a = b + c, yielding

a = b + λ − b, however these types of more “macroscopic” constraints in algorithms

can be difficult or impossible to find automatically. It is because of this that we can

consider propagated range information to be an upper bound.

Given a lower and upper bound on the bit width of a variable, we can consider the

difference between these two bounds to be the slack. The actual precision require-

ment is most likely to lie between these two bounds. Manipulating the precision of

nodes with slack can yield gains in precision system-wide, as changes in any single

node may impact many other nodes within the circuit. The reduction in precision

requirements and the resultant improvements in area, power, and performance can be

considered gain. Through careful analysis of the slack at a node, we can calculate how

much gain can be achieved by manipulating the precision between these two bounds.

Additionally, by performing this analysis independently for each node with slack, we

can generate an ordered list of “tuning points” that the user should consider when

performing manual iterative optimization.

A reduction in the area requirements of a circuit is a gain. In order to compute the

gain of a node with respect to area, power and performance, we need to develop basic

hardware models to capture the effect of precision changes upon these parameters.

For this work a simple area model serves as the main metric. For example, an adder

has an area model of x, indicating that as the precision decreases by one bit, the area

reduces linearly and the gain increases linearly. In contrast, a multiplier has an area

model of x2, indicating that the area reduction and gain achieved are proportional

to the square of the word size. Intuitively, this would give a higher overall gain

value for bit reduction of a multiplier than of an adder, which is in line with the

implementations that are familiar to hardware designers. Using these parameters,
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our approach can effectively choose the nodes with the most possible gain to suggest

to the user. We detail our methodology in the next section.

4.8 Performing Slack Analysis

The goal of slack analysis is to identify the nodes that could be constrained by the

user that will yield the greatest impact upon the overall circuit area. While we do

not believe it is realistic to expect users to constrain all variables, most users would

be able to consider how to constrain a few “controlling” values in the circuit.

Our method seeks to optimize designer time by guiding them to the next important

variables to consider for constraining. Précis can also provide a stopping criterion for

the user: we can measure the maximum possible benefit from future constraints by

constraining all variables to their lower bounds. The user can then decide to stop

further investigation when the difference between the current and lower bound area

is no longer worth further optimization.

Our methodology is straightforward. For each node that has slack, we set the

precision for only that node to its range-find value—the lower bound. Then, we

propagate the impact of that change over all nodes and calculate the overall gain in

terms of area for the change, system-wide. We record this value as the effective gain

as a result of modifying that node. We then reset all nodes and repeat the procedure

for the remaining nodes that have slack. We then sort the resultant list of gain values

in decreasing order and present this information to the user in a dialog window. From

the graphical user interface, the user can easily see how and which nodes to modify

to achieve the highest gain. It is then up to the designer to consider these nodes and

determine which, if any, should actually be more tightly constrained than suggested

by Précis. Pseudo-code for the slack analysis procedure is shown in Fig. 4.7.
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PerformSlackAnalysis

1 constrain user-specified variables

2 perform propagation

3 baseArea← calculateArea()

4 load range data for some set of variables n

5 listOfGains← ∅

6 foreach m in n

7 reset all variables to baseline precision (from line 1)

8 constrain range of m to the range analysis value

9 perform one pass of forward then reverse propagation

10 newArea← calculateArea()

11 if (newArea < baseArea) then

12 listOfGains← (m, baseArea− newArea)

13 sort listOfGains by decreasing gain

Figure 4.7: Slack analysis pseudo-code
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4.9 Benchmarks

In order to determine the effectiveness of Précis, we utilized the tool to optimize

a variety of image and signal processing benchmarks. To gauge how effective the

suggestions were, we constrained the variables the tool suggested in the order they

were suggested to us, and calculated the resulting area. The area was determined

utilizing the same area model discussed in previous sections, i.e. giving adders a

linear area model while multipliers are assigned an area model proportional to the

product of their input word sizes. We also determined an asymptotic lower bound

to the area by implementing all suggestions simultaneously to determine how quickly

our tool would converge upon the lower bound.

4.9.1 Wavelet Transform

The first benchmark we present is the wavelet transform. The wavelet transform is a

form of image processing, primarily serving as a transformation prior to applying a

compression scheme, such as SPIHT [36]. A typical discrete wavelet transform runs a

high-pass filter and low-pass filter over the input image in one dimension. The results

are down sampled by a factor of two, effectively spatially compressing the wavelet by

a factor of two. The filtering is done in each dimension, vertically and horizontally

for images. Each pass results in a new image composed of a high-pass and low-pass

sub-band, each half the size of the original input stream. These sub-bands can be

used to reconstruct the original image.

This algorithm was hand-mapped to hardware as part of work done by Thomas

Fry [36]. Significant time was spent converting the floating-point source algorithm

into a fixed-point representation by utilizing methodologies similar to those presented

here. The result was an implementation running at 56MHz, capable of compressing

8-bit images at a rate of 800Mbits/sec. This represents a speedup of nearly 450 times

as compared to a software implementation running on a Sun SPARCStation 5.
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Figure 4.8: Wavelet area vs. number of optimization steps implemented

The wavelet transform was subsequently implemented in MATLAB and optimized

in Précis. In total, 27 variables were manually selected to be constrained. These

variables were then marked for range-finding analysis and annotated MATLAB code

was generated. This code was then run in the MATLAB interpreter with a sample

image file (Lena) to obtain range values for the selected variables. These values were

then loaded into Précis to obtain a lower bound to be used during the slack analysis

phase. The results of the slack analysis are shown in Fig. 4.8.

These results are normalized to the lower bound, which was obtained by setting

all variables to their lower bound constraints and computing the resulting area. The

slack analysis results suggested constraining the input image array, then the low and
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high pass filter coefficients, and finally the results of the additions in the multiply-

accumulate structure of the filtering operation.

By iteratively performing the optimization “moves” suggested by the Précis slack

analysis phase, we were able to reach within fifteen percent of the lower bound system

area in three moves. By about seven moves, the normalized area was within three

percent of the lower bound, and further improvements were negligible. At this point

a typical user may choose to stop optimizing the system.

To determine if this methodology is sound, we compared the suggested optimiza-

tion steps to the performance if we were optimizing randomly. We performed four

optimization runs where the nodes selected for optimization were randomly chosen

from the set of nodes with slack. The same values for the upper and lower precision

bounds as the guided optimization scheme were used. The average area of these ran-

dom passes is plotted versus the guided slack-analysis approach in Fig. 4.8. As shown,

the guided optimization route suggested by Précis approaches the lower bound much

more quickly than the random method. The random method, while still improving

with each optimization step, does so much more slowly than the guided slack analysis

approach. From this we conclude that our slack analysis approach provides useful

feedback in terms of what nodes to optimize in what order to make the largest gains

in the fewest number of optimization steps. This same comparison to random moves

is done for all following benchmarks.

It is important to note that the area values obtained by Précis are calculated by

reducing the range of a number of variables to their range-found lower bounds. This

yields what could be considered the “best-case” solution only for the input data sets

considered. In reality, using different input data with these range-found lower bounds

might introduce errors into the system. Therefore it is important to continue testing

the solution with new data sets even after optimization is complete. This testing step

is made easier with the automatic generation of annotated simulation code for use in

MATLAB.
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4.9.2 CORDIC

The next benchmark investigates the CORDIC algorithm [73], an acronym that stands

for COordinate Rotation DIgital Computer. The algorithm is novel in that it is an

iterative solver for trigonometric functions that requires only a simple network of

shifts and adds, and produces approximately one additional bit of accuracy for each

iteration. A more complete discussion of the algorithm, as well as a survey of FPGA

implementations, can be found in [4].

The CORDIC algorithm can be utilized in two modes: rotation mode and vec-

toring mode. For this benchmark we utilized rotation mode, which rotates an input

vector by a specified angle while simultaneously computing the sine and cosine of the

input angle. As in [4], the difference equations for rotation mode are:

xi+1 = xi − yi ∗ di ∗ 2−i

yi+1 = yi + xi ∗ di ∗ 2−i

zi+1 = zi − di ∗ tan−1(2−i)

where

di =

−1 if zi < 0

+1 otherwise

The MATLAB implementation of CORDIC was unrolled into twelve stages. In

order to obtain a variety of variable range information during the range finding phase

of the analysis, a test harness was developed that swept the input angle through all

integer angles between 0◦ and 90◦. The results were then passed into Précis and all

41 intermediate nodes were chosen for slack analysis. The results are shown in Fig.

4.9, truncated to the first 21 moves suggested by the tool, and are consistent with

those in the wavelet benchmark.

The suggested moves do not converge upon the lower bound as quickly as the

wavelet benchmark, taking until the eighth move to reach the lower bound area. This
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Figure 4.9: CORDIC benchmark results
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can be attributed to the fact that the slack analysis algorithm is greedy in nature. The

first few proposed moves all originate at the outputs. Only after these are constrained

does the slack analysis suggest moving to the input variables. This behavior is in

part due to the depth of the adder tree present in the twelve-stage unrolling of the

algorithm. The gain achieved by constraining the outputs is greater than the limited

impact of constraining any one of the inputs because the output nodes are significantly

larger. Shortly thereafter, though, all the input variables are constrained, giving us

the large improvement in area after the seventh suggested move, at which point the

very linear data path of the CORDIC algorithm has been collapsed to near the lower

bound.

4.9.3 Gaussian Blur

The third benchmark is a Gaussian blur implemented as a spatial convolution of a

3x3 Gaussian kernel with a 512x512 greyscale input image. We ignore rescaling of

the blurred image for simplicity. The Gaussian blur algorithm was input into Précis

and 14 intermediate nodes were chosen for the slack analysis phase. The results are

shown in Fig. 4.10. The slack analysis prompted us to constrain first the Gaussian

kernel followed by the input image. This led to the largest area improvement—within

28 percent of the lower bound in three moves, and within eight percent in 5 moves.

Again, the tool makes good choices for optimization and achieves performance near

the lower bound in many fewer optimization steps than the random move approach.

4.9.4 1-D Discrete Cosine Transform

The next benchmark is a one-dimensional discrete cosine transform. The DCT [1] is

a frequency transform much like the discrete Fourier transform, but using only real

numbers. It is widely used in image and video compression. Our implementation is

based upon the work done by [54] as used by the Independent JPEG Group’s JPEG
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Figure 4.10: Gaussian blur results
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Figure 4.11: 8-point 1-D DCT results

software distribution [51]. This implementation requires only 12 multiplications and

32 additions.

Our MATLAB implementation performed an 8-point 1-D DCT upon a 512x512

input image. The results for all 25 nodes chosen for slack analysis are shown in Fig.

4.11. To get within a factor of two of the lower bound, the input image and DCT

input vector are constrained. The suggested moves achieve within 50 percent of the

lower bound within six moves, and within two percent in 12 moves.
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4.9.5 Probabilistic Neural Network

The final benchmark we investigated was a multi-spectral image-processing algorithm,

similar to clustering analysis and image compression, designed for NASA satellite im-

agery. The goal of the algorithm is to use multiple spectral bands of instrument

observation data to classify each image pixel into one of several classes. For this

particular application, these classes define terrain types, such as urban, agricultural,

rangeland, and barren. In other implementations, these classes could be any sig-

nificant distinguishing attributes present in the underlying dataset. This class of

algorithm transforms the multi-spectral image into a form that is more useful for

analysis by humans.

One proposed scheme to perform this automatic classification is the Probabilistic

Neural Network classifier [22]. In this implementation, each multi-spectral image

pixel vector is compared to a set of training pixels or weights that are known to be

representative of a particular class. The probability that the pixel under test belongs

to the class under consideration is given the formula depicted below.

f(
−→
X |Sk) =

1

(2π)d/2σd
∗ 1

Pk

∗
Pk∑
i=1

exp

[
− (
−→
X −

−−→
Wki)

T (
−→
X −

−−→
Wki)

2σ2

]

Here,
−→
X is the pixel vector under test,

−−→
Wki is the weight i of class k, d is the

number of spectral bands, k is the class under consideration, σ is a data-dependent

“smoothing” parameter, and Pk is the number of weights in class k. This formula

represents the probability that pixel
−→
X belongs in the class Sk. This comparison

is then made for all classes and the class with the highest probability indicates the

closest match.

This algorithm was manually implemented on an FPGA board and described

in greater detail in [15]. Like the wavelet transform described earlier, significant

time and effort was spent on variable range analysis, with particular attention being

paid to the large multipliers and the exponentiation required by the algorithm. This
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Figure 4.12: PNN area vs. number of optimization steps implemented utilizing only
range-analysis-discovered values

implementation obtained speedups of 16 versus a software implementation on an HP

workstation.

The algorithm was implemented in MATLAB and optimized with Précis. Twelve

variables were selected and slack analysis was run as in the previous benchmarks.

Again, all results were normalized to the lower bound area. As shown in Fig. 4.12,

the tool behaved consistently with other benchmarks and was able to reach within

four percent of the lower bound within six moves, after which additional moves served

to make only minor improvements in area.
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For a seasoned developer with a deeper insight into the algorithm, or for some-

one that already has an idea of how the algorithm would map to hardware, the

range-analysis phase sometimes returns results that are sub-optimal. For example,

the range-analysis of the PNN algorithm upon a typical dataset resulted in several

variables being constrained to ranges such as [20, 2−25], [28, 2−135], [20, 2−208], and so

on. This simply means that the range-finding phase discovered values that were ex-

tremely small and thus recorded the range as requiring many fractional bits (bits right

of decimal point) to capture all the precision information. The shortcoming of the

automated range-analysis is that it cannot determine at what point values become

too small to affect follow-on calculations, and therefore might be considered unim-

portant. With this in mind, the developer would typically restrict the variables to

narrower ranges that preserve the correctness of the results while requiring fewer bits

of precision.

Précis provides the functionality to allow the user to make these decisions in its

annotated MATLAB code generation. In this case, the user would choose a nar-

rower precision range and a method by which to constrain the variable to that range,

consistent with how they implement the operation in hardware—truncation, satura-

tion, rounding, or any of the other methods presented in previous sections. Then,

the developer would generate annotated MATLAB code for simulation purposes, and

re-run the algorithm in MATLAB with typical data sets. This would allow the user

to determine how narrow a precision range would be tolerable and thus constrain

the variables in Précis accordingly. The user would then be able to continue the

slack analysis phase, optionally reconstraining variables through use of simulation as

wider-than-expected precision ranges were encountered.

This user-guided method was performed by reconstraining the variables suggested

by the slack analysis phase to more reasonable ranges. For instance, the third variable

suggested by the slack analysis phase, classTotal, had a range-found precision of

[210, 2−60], far too wide to implement in an area-efficient manner. This value was
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Figure 4.13: PNN area with user-defined variable precision ranges

reconstrained to [237, 20], which includes an implicit scaling factor. This type of

reconstraining was performed in the order the variables were suggested by Précis.

The results from this experiment are shown in Fig. 4.13, normalized to the lowest

bound between the standard and “user-guided” approaches.

At first glance, one can see that both methods provide similar trends, approaching

the lower bound within five to seven moves. This behavior is expected and is consistent

with the results of the other benchmarks. The results show that the user-guided

approach, when reconstraining variables during slack analysis to narrower ranges,

achieves a lower bound that is almost 50 percent lower than slack analysis without
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user guidance. As expected, the unguided slack analysis approach does not improve

further as the number of optimization steps is increased.

The intuition of the hardware developer is used in this case to achieve a more

area-efficient implementation than was possible with the unguided slack analysis op-

timization. The ability to keep the “user in the loop” for optimization is crucial to

obtaining good implementations, something that Précis is clearly able to exploit.

4.10 Limitations

The results of the previous sections have shown encouraging results for guided op-

timization of the position of the most-significant bit using the approaches presented

in this chapter. However, there are a number of limitations that present themselves

when the entire scope of interactive iterative optimization is taken into account.

In its current implementation, Précis uses a very simplistic area model to perform

the area estimation. While appropriate for the complexity of algorithms presented in

this dissertation, significantly larger and more complex algorithms may benefit from

more accurate models. This limitation is corrected in Chapter 5 where more accurate

models are introduced.

Another limitation is the fact that manual optimization is still necessary for final

implementation. Since the tool possesses the data path width information, it could

perform automatic behavioral HDL generation, providing many potential benefits.

Some benefits include: the developer would have a basic HDL starting point for

further refinement; if synthesis and place and route are performed, actual area and

timing numbers could be factored into the optimization process; simulation could take

place on actual hardware at hardware speeds, allowing for more testing to take place.

While not a trivial task, automatic HDL may be a useful route to examine in the

future.
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Finally, as previously mentioned, the slack analysis approach depends upon pre-

cision slack between an upper and lower bound found through using the propagation

engine and range finding analysis, respectively. The quality of result that the slack

analysis technique yields is data dependent, a shortcoming inherent in the hybrid

analytical/simulation techniques employed in Précis.

One can partially alleviate this shortcoming through careful data set selection

and increased testing. Data sets that exercise the full expected range of precision,

both common and extreme cases, should be used to gather meaningful information

from the range finding phase of analysis. Then, once an implementation is obtained,

simulation with new data sets might be prudent to determine if the data path width is

too aggressive or too conservative. Unfortunately, this places the burden on the user

and requires more simulation time to verify the correctness of an implementation.

A more fundamental change may also alleviate some of the data dependency. By

expanding the amount of statistical information gathered in the range finding phase

of analysis it may be possible to predict the likelihood of other data sets falling above

or below the monitored ranges. By using information such as mean and variance, this

likelihood information can be propagated back to the user as the risk of error being

introduced into the output. By incorporating a statistical component to the lower

bound, the range finding phase can be made less sensitive to extreme cases in the

data set.

While the results shown in this chapter are consistently positive over a range of

benchmarks, limitations to the techniques presented do exist and should be addressed.

Doing so would improve upon the results shown and enhance the usefulness of Précis

as an optimization tool.
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4.11 Summary

In this chapter we presented Précis, a tool that enables semi-automatic, user-centric,

design-time precision analysis and data path optimization. Précis combines an au-

tomatic propagation engine, a fixed-point simulation environment with automatic

MATLAB code generation, MATLAB support routines with automatic code genera-

tion for variable statistics gathering, and a slack analysis phase. Together, this tool

chest addresses a major shortcoming of automated data path optimization techniques:

leaving the developer out of the optimization. We have demonstrated an effective

methodology for guiding the developer’s eventual manual optimization toward those

regions of the data path that will provide the largest area improvement.

Précis aids new and seasoned hardware developers in answering the four basic

questions needed to perform data path optimization at a very high level, before HDL

is generated. At this time, small design changes almost always lead to large differences

in performance of the final implementation. Thus, it is crucial to have assistive tools

from the very beginning of the design cycle, in particular, data path optimization.

Unfortunately, there are few commercial and academic tools that provide this level of

support, highlighting the importance of this contribution.
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Chapter 5

LEAST-SIGNIFICANT BIT OPTIMIZATION

The previous chapter discussed methodologies and tools that allow us to perform

guided most-significant bit position optimization in a convenient and novel fashion.

The slack analysis procedure, while effective in dealing with the position of the most-

significant bit, does not attempt to optimize the position of the least-significant bit.

In this chapter we investigate methods that allow optimization of the least-significant

bit position in an automated fashion given user-defined area and error constraints.

As discussed in previous chapters, increasing the relative bit position of the least-

significant bit (toward the most-significant end) reduces the maximum precision that

the data path may attain. A side-effect of this precision reduction is a likely error

accumulation through truncation or round-off error when a data path value requires

greater precision than the data path can represent. After performing the optimization

for the most-significant bit position as described in the previous chapter, an area/error

tradeoff analysis must be performed to optimize the position of the least-significant

bit. This tradeoff analysis and its automation are the focus of this chapter.

5.1 Constant Substitution

In order to quantify the benefit of the optimization techniques we present in this

chapter, we introduce our metrics: error and area. Error is measured as the net

distance from the correct answer, or |expectedV alue− obtainedV alue|, while area is

estimated in terms of number of FPGA logic blocks consumed.
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Figure 5.1: Constant substitution

Consider an integer value that is M ′ bits in length. This value has an implicit

binary point at the far right—to the right of the least-significant bit position. By

truncating bits from the least-significant side of the word, we reduce the area impact

of this word on downstream arithmetic and logic operations. It is common practice to

simply truncate the bits from the least-significant side to reduce the number of bits

required to store and operate on this word. We propose an alternate method—replace

the bits that would normally be truncated with constants, in this case zeros (Fig. 5.1).

Therefore, for an M ′-bit value, we will use the notation Am0p. This denotes a word

that has m correct bits and p zeros inserted to signify bits that have been effectively

truncated, resulting in an M ′ = m + p-bit word.

We begin the analysis of this fundamental change in data path sizing technique

by developing models for area and error estimation of a general island-style FPGA.
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5.2 Hardware Models

By performing substitution rather than immediate truncation, we introduce a critical

difference in the way hardware will handle this data path. Unlike the case of immedi-

ate truncation, the implementation of downstream operators does not need to change

to handle different bit-widths on the inputs. If the circuit is specified in a behavioral

fashion using a hardware description language (HDL), the constant substitution be-

comes a wire optimization that is likely to fall under the jurisdiction of vendor tools

such as the technology mapper and the logic synthesizer.

For example, in an adder, as we reduce the number of bits on the inputs through

truncation, the area requirement of the adder decreases. The same relationship exists

when we substitute zeros in place of variable bits on an input, because wires can be

used to represent static zeros or static ones, so the hardware cost in terms of area is

essentially zero. The area impact similarity to truncation should be obvious, as both

methods remove bits from the data path computation. This allows us to use constant

substitution in place of truncation for many data path operators, as their semantics

are identical. In the next sections we outline the area models used to perform area

estimation of the data path.

5.2.1 Adder Hardware Model

One of the most simple FPGA logic block architectures is the two-input lookup table

(2-LUT). Its simplicity allows for ease of abstraction in terms of an area model.

In a 2-LUT architecture, a half-adder can be implemented with a pair of 2-LUTs.

Combining two half-adders together and an OR gate to complete a full-adder requires

five 2-LUTs. To derive the hardware model for the adder structure as described in

previous sections, we utilize the example shown in Fig. 5.2.

Starting at the least-significant side, all bit positions that overlap with zeros need

only wires since the inputs can be wired directly to the outputs. The next most
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Figure 5.2: Adder hardware requirements

significant bit will only require a half-adder, as there can be no carry-in from any

lower bit positions. For the rest of the overlapping bit positions, we require a regular

full-adder structure, complete with carry propagation. At the most-significant end, if

there are any bits that do not overlap, we require half-adders to add together the non-

overlapping bits with the possible carry-out from the highest overlapping full-adder

bit.

The hardware impact of substitution can be generalized using the formulae in

Table 5.1 and the notation previously outlined. This allows an analytic estimation of

the area requirement of constant-substituted adder structures to be performed. For

the example in Fig. 5.2, we have the following notation to describe the addition:

Am0p + Bn0q

m = 7, p = 1, n = 5, q = 4

This operation requires two half-adders, three full-adders, and four wires. In total,

19 2-LUTs.

5.2.2 Multiplier Hardware Model

The same approach is used to characterize the multiplier. A multiplier consists of

a multiplicand (top value) multiplied by a multiplier (bottom value). The hardware
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Table 5.1: Adder Area

Number Hardware

|M ′ −N ′| half-adder

min(M ′, N ′)−max(p, q)− 1 full-adder

1 half-adder

max(p, q) wire

HAFAFAHA

HAFAFAFA

HAFAFAFA

0,00,11,00,21,10,31,21,3

2,02,12,22,3

3,03,13,23,3

p0p2p3p4p5p6p7 p1

Figure 5.3: Multiplication structure

required for an array multiplier consists of AND gates, half-adders, full-adders, and

wires. The AND gates form the partial products, which in turn are inputs to an adder

array structure as shown in Fig. 5.3.

Referring to the example in Fig. 5.4, each bit of the input that has been substituted

with a constant zero manipulates either a row or column in the partial product sum

calculation. For each bit of the multiplicand that is zero, we effectively remove a

column from the partial product array. For each bit of the multiplier that is zero, we
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Figure 5.4: Multiplication example

remove a row. Thus:

Am0p ∗Bn0q

m = 3, p = 1, n = 2, q = 2

is effectively a 3x2 multiply, instead of a 4x4 multiply, shown as the shaded portion of

Fig.5.4. This requires two half-adders, one full-adder, and six AND gates, for a total

of 15 2-LUTs. This behavior has been generalized into formulae shown in Table 5.2.

5.2.3 Model Verification

To verify the developed hardware models against real-world implementations, we

implemented both the adder and multiplier structures in Verilog on the Xilinx Virtex

FPGA using the vendor-supplied place and route tools, Xilinx Foundation.

For the adder structure, we observe in Fig. 5.5 that the model closely follows the

actual implementation area, being at worst within two percent of the actual Xilinx

Virtex hardware implementation. The number of bits substituted at the two adder

inputs was the same within each data point.
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Table 5.2: Multiplier Area

Number Hardware

min(m, n) half-adder

mn−m− n full-adder

mn AND

p + q wire

0 2 4 6 8 10 12 14
0.5

0.6

0.7

0.8

0.9

1
Area of ADD32: Model vs. Xilinx Virtex

Number of zeros substituted

N
or

m
al

iz
ed

 a
re

a 
(L

U
T

s)

ADD32 Model
ADD32 Verilog

Figure 5.5: Adder model verification
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Figure 5.6: Multiplier model verification

The multiplier in Fig. 5.6 has a similar result to the adder, being at worst within

12 percent of the Xilinx Virtex implementation. These results support the use of the

simple 2-LUT approximation of general island-style FPGAs to within a reasonable

degree of accuracy.

5.3 Error Models

Area is only one metric upon which we will base optimization decisions. Another

crucial piece of information is the error introduced into the computation through the

quantization error of a fixed-point data path.
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Figure 5.7: Error model of an adder

Having performed a reduction in the precision that can be obtained by this data

path with a substitution of zeros, we have introduced a quantifiable amount of error

into the data path. For an Am0p value, substituting p zeros for the lower portion of

the word gives us a maximum error of 2p − 1. This maximum error occurs when the

bits replaced were originally ones, making this result too low by the amount 2p−1. If

the bits replaced were originally zeros, we will have incurred no error. We will use the

notation [0..2p−1] to describe this resultant error range produced by the substitution

method.

As with the area models, using constant zeros at the least-significant end of a

word is functionally equivalent, in terms of error, to truncating the same number of

bits for many types of data path operators. This is intuitive in operations such as

addition and multiplication where truncation removes bits from the computation just

as using constant zeros does.

This abstract error model is used in the optimization methodology to estimate the

effective error of combining quantized values with arithmetic operations. We discuss

the details of implementing this error model for adder and multiplier structures.

5.3.1 Adder Error Model

The error model for an adder is shown in Fig. 5.7. The addition of two possi-

bly quantized values Am0p + Bn0q, results in an output, C, which has a total of
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Figure 5.8: Error model of a multiplier

max(M ′, N ′) + 1 bits. Of these bits, min(p, q) of them are substituted zeros at the

least-significant end. In an adder structure, the range of error for the output, C, is

the sum of the error ranges of the two inputs, A and B. This results in an output

error range of [0..2p + 2q − 2].

5.3.2 Multiplier Error Model

We use the same approach to derive an error model for a multiplier. Again we have

two possibly quantized input values, Am0p ∗ Bn0q, multiplied together to form the

output, C, which has a total of M ′ + N ′ bits. Here, p + q of them are substituted

zeros at the least-significant end. This structure is shown in Fig. 5.8.

The output error is more complex in the multiplier structure than the adder

structure. The input error ranges are the same, [0..2p − 1] and [0..2q − 1] for Am0p

and Bn0q, respectively, but unlike the adder, multiplying these two inputs together

requires us to multiply the error terms as well, as shown in (5.1).

C = A ∗B

= (A− (2p − 1)) ∗ (B − (2q − 1))

= AB −B(2p − 1)− A(2q − 1) + (2p − 1)(2q − 1)

(5.1)

The first line of (5.1) indicates the desired multiplication operation between the

two input signals. Since we are introducing errors into each signal, line two shows the
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impact of the error range of Am0p by subtracting 2p − 1 from the error-free input A.

The same is done for input B.

Performing a substitution of Ep = 2p − 1 and Eq = 2q − 1 into (5.1) yields the

simpler (5.2):

C = AB −BEp − AEq + EpEq

= AB − (AEq + BEp − EpEq)
(5.2)

From (5.2) we can see that the range of error resulting on the output C will be

[0..AEq + BEp − EpEq]. That is to say the error that the multiplication will incur is

governed by the actual correct value of A and B, multiplied by the error attained by

each input. In terms of maximum error, this occurs when we consider the maximum

attainable value of the inputs multiplied by the maximum possible error of the inputs.

5.4 Optimization Methods

Using the models described in the previous sections, we can now quantify the tradeoffs

between area and error of various optimization methodologies, some of which exploit

the use of constant substitution to derive benefits over simple truncation.

5.4.1 The Nature of Error

Looking at the error introduced into a data path using the standard method of simple

truncation, we see that the error is skewed, or biased, only in the positive direction.

As we continue through data path elements, if we maintain the same truncation policy

to reduce the area requirement of our circuits, the lower-bound error will remain zero

while the upper bound will continue to skew toward larger and larger positive values.

This behavior also holds true for the zero-substitution policy in Fig. 5.7 and Fig. 5.8.

This error profile does not coincide with our natural understanding of error. In

most cases we consider the error of a result to be the net distance from the correct

value, implying that the error term can be either positive or negative. Unfortunately,
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neither straight truncation nor the zero-substitution policy, as defined in previous

sections, matches this notion of error. These methods only utilize half of the available

area, as they do not exploit the negative region of error. Fortunately, substituting

constants for the least-significant bits allows us to manipulate their static values and

capture this more intuitive behavior of error. We call this process renormalization.

5.4.2 Renormalization

It is possible for us to capture the more natural description of error with constant-

substitution because the least-significant bits are still present. We can use these bits

to manipulate the resultant error range. An example of renormalization in an adder

structure is shown in Fig. 5.9. We describe this method as “in-line renormalization” as

the error range is biased during the calculation. It is accomplished by modifying one of

the input operands with one-substitution instead of zero-substitution. This effectively

flips the error range of that input around zero. The overall effect is to narrow the

resultant error range, bringing the net distance closer to zero. Specifically, if the

number of substituted zeros and ones are equal, an error range whose net distance from

zero is achieved that is half that if zero substitution was used. If instead truncation

were performed, no further shaping of the error range would be possible, leaving us

with a positively skewed error range not consistent with our natural notion of error.

For example, in Fig. 5.7, a substitution of p, q zeros results in an error range of

[0..2p + 2q − 2]. By using renormalization, this same net distance from the real value

can be achieved with more bit substitutions, p+1, q +1, on the input. This will yield

a smaller area requirement for the adder. Likewise, the substitution of p, q zeros with

renormalization now incurs half the error on the output, [−(2p−1)..2q−1], if p == q,

as shown in Fig. 5.9.

As with the adder structure, renormalization of the multiplier is possible by using

different values for least-significant bit substitution, yielding an error range that can

be biased. Fig. 5.10 depicts a normalization centered near zero by substituting ones
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instead of zeros for input B, and if p == q. The derivation of the resultant error

range is as follows in (5.3):

C = (A− Ep)(B + Eq)

= AB + AEq −BEp − EpEq

= AB + AEq − (BEp + EpEq)

= AB + AEq −
EpEq

2
−

(
BEp +

EpEq

2

)
= AB +

Eq

2
(2A− Ep)−

Ep

2
(2B + Eq)

(5.3)

Performing in-line renormalization requires modifying substitution constants on

primary inputs. A variation of in-line renormalization that can accomplish the same

error biasing without requiring the manipulation of inputs is “active renormalization”.

By inserting a constant addition, we can again deterministically bias the output error
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Figure 5.11: Using addition to perform active renormalization

range. An example is shown in Fig. 5.11. Active renormalization is not so much

a different technique from in-line renormalization, but rather should be considered

a different implementation of the same optimization technique. Active renormaliza-

tion is useful when intermediate nodes may have very imbalanced error ranges that

cannot be corrected by manipulating the inputs. Active renormalization can also be

implemented with little area overhead within existing arithmetic structures, as will

be discussed in the next section, where the distinction between in-line and active

renormalization becomes less rigid.

5.4.3 Renormalization Area Impact

The benefits of renormalization can come very cheaply in terms of area. The adder

structure example from Fig. 5.2 originally requires 19 2-LUTs and has an error range

of [0..16]. From here, we can perform a variety of optimizations that achieve different,

and perhaps better, area-to-error profiles.

To perform in-line renormalization, we simply substitute a “1” for the least-

significant bit on one of the inputs. This would yield an output error range of [−1..15].

While not particularly biased, it doesn’t incur any area penalty as the newly substi-
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tuted “1” lines up with a zero from the other input, requiring no computational

hardware.

Even when substituted ones and zeros on the inputs completely overlap, con-

sideration must be made for downstream operations, as we now have ones in the

least-significant bit positions which may need to be operated upon in subsequent op-

erations. This may adversely impact the overall area of the circuit, at which point

“active” renormalization should be considered as an alternative that can be imple-

mented cheaply later in the data path to “fix up” the error range using a constant

bias.

We can achieve a balanced output error range of [−8..8] by flipping the constant

zero substituted at the 23 bit position of input B to a constant one, as shown in 5.12.

With the presence of a constant one, a different calculation must be performed for that

bit position by replacing the original wire with an inverter structure. Using FPGAs,

which are lookup table based computational devices, this inverter structure is simply

a change in how the lookup table(s) this signal eventually reaches are computed, and

therefore requires no additional hardware. In order to handle the possible carry-out

from this pseudo-half-adder at the 23 bit position, the half-adder originally at the

24 bit position must be replaced with a full-adder. These two changes have an area

impact of +3 2-LUTs and result in a balanced error range, [−8..8], half that of the

original error range of [−16..16].

Alternatively, we can obtain a completely negative bias of [−16..0] with zero area

penalty by modifying the structure of the half-adder at the 24 bit position to have a

constant carry-in of 1 as shown in Fig. 5.13. This is a simple change to the lookup

table implementation of the half-adder that effectively adds a constant value of 16 to

the addition without incurring an area penalty. This has the same effect as using the

“active renormalization”, where an explicit addition is performed to change the error

bias of the data path.
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Figure 5.12: Renormalization by changing input constants achieves balanced output
error with +3 area penalty

Figure 5.13: Renormalization by modification of adder structure achieves completely
negative output error range with zero area penalty
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Figure 5.14: Simple three adder data path before renormalization has maximum error
range of 32

While at first glance the resultant error range of [−16..0] may not be any narrower

than the original error range, having a variety of error range biases can prove very

useful when considering a larger number of data path operators. Consider the simple

data path comprised of three adders in Fig. 5.14.

The two leftmost adders are the same as the adder example of Fig. 5.2. Each

of the first level adders produces an output error range of [0..16]. The output of the

sum of these two first level adders yields an output error range at the second level

adder of [0..32]. If the modification depicted in Fig. 5.13 is applied to the C +D first

level adder, the output error range will be completely negatively biased to [−16..0].

This optimized implementation is shown in Fig. 5.15. The output error range of the

second level adder will now be [−16..16] instead of [0..32]. Renormalization has given

a result that has half the overall maximum error range with zero area penalty.

The behavior of renormalization in multiplier structures is equally interesting. As

can be seen in Fig. 5.4, zeros substituted at the least-significant end of either the

multiplier or the multiplicand “fall” all the way through to the result. For the multi-

plication Am0p ∗Bn1q, p zeros will be present at the least-significant end of the result,
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Figure 5.15: Simple three adder data path after renormalization has maximum error
range of 16

having “fallen through” from the p zeros substituted on input A. This is advantageous

compared to the adder because a renormalized error result can be obtained while still

providing zero-substituted bit positions that will not have to be operated upon in

downstream operations. This is important in providing opportunities for area savings

throughout the data path. As with the adder structure, we pay a penalty for this

renormalization. For the multiplier, we must put back an inner row and column for

each one-substitution present in the multiplier and multiplicand, respectively.

5.4.4 Alternative Arithmetic Structures

As discussed in previous sections, the zero-substitution method for multipliers gives

a reduced area footprint at the cost of increased error in the output over an exact

arithmetic multiplication. An alternative to this method of area/error tradeoff is one

described in [53]. This work, and the work of others [61, 76], focuses on removing a

number of least-significant columns of the partial-product array in order to provide a

different area-to-error profile.
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Figure 5.16: Truncated multiplier: removal of shaded columns reduces area and in-
creases error

As described in [61], by removing the n least-significant columns from an array-

multiplier multiplication, we save (for n ≥ 2) n(n+1)
n

AND gates, (n−1)(n−2)
2

full adders,

and (n−1) half adders. This column removal, depicted in Fig. 5.16, reduces the area

requirement of a truncated multiplier. This method has a different area-to-error

tradeoff profile than a traditional array multiplier, and is illustrated in Fig. 5.17 for

a 32-bit multiplier. In this figure, each marker represents one column truncated from

the partial product array, or one pair of input bits substituted with constant zeros,

using truncated or zero-substituted multipliers, respectively. The right-most markers

represent one column and one bit of zero substitution, increasing toward the left.

In the work presented by Lim, Schulte and Wires [53,61,76], it was assumed that

the inputs to the truncated multipliers were full precision, in other words, without

constant substitutions made. If this limitation were to be carried into the framework

presented in this chapter, it would require all calculations prior to the use of a trun-

cated multiplier to be full precision (i.e. no constant substitutions), possibly negating

any area gain by requiring larger, full-precision operators upstream. This would make
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truncated multipliers more valuable in multiplications occurring closer to the inputs

than those closer to the outputs.

However, it is possible to combine constant substitution with truncation, as each

method has a well-defined impact upon area and error. In this work, we allow for

both constant substitution as well as truncation in multiplier structures.

5.5 Automated Optimization

We have presented several optimization methods designed to allow more control of

the area/error profile of the data path. Due to the strongly interconnected nature

of data paths and data flow graphs in general, it is hard to analytically quantify the

impact of each method on the overall profile of the system. Making a small change,

such as increasing the number of zero-substituted bits at a particular primary input,

will impact the breadth of possible optimizations available at every node.
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Fortunately, we have provided a model that can accurately determine the area and

error of each node within the data path. With these measurements and optimization

“moves”, we can utilize simulated annealing [47] to choose how to use our palette

of optimizations to achieve an efficient implementation area while meeting a user-

specified error constraint.

5.5.1 Simulated Annealing

Simulated annealing is a technique commonly used to solve complex combinatorial

optimization problems. It is a heuristic technique that leverages randomness to find

a good global solution while avoiding local minima. The name and inspiration for

simulated annealing originates in the process of annealing in metallurgy. An an-

cient process, annealing begins by heating a metal to mobilize the atoms within the

crystalline lattice. Through uniform and controlled cooling, these mobile atoms find

lattice configurations that have lower energy states and are in general more “orderly”.

The result is a metal that has fewer defects and larger crystals.

A typical simulated annealing algorithm requires four ingredients as described

in [47]. A description of the configuration of the system to be optimized, a random

generator of “moves” for elements in the system, an objective function to evaluate the

quality of any configuration, and a cooling schedule to guide the annealing process.

The annealer begins with a candidate, often random, configuration of the problem.

At an initially high temperature, a number of random moves are attempted. Moves

that yield an improvement in the configuration are accepted while moves that degrade

the configuration are probabilistically accepted based upon the current temperature

and the severity of the degradation. At high temperatures bad moves are more likely

to be accepted than at lower temperatures, giving the algorithm an opportunity to

navigate away from local minima. The duration of the annealing process as well as

the acceptance ratio profile is governed by a carefully crafted cooling schedule.
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Simulated annealing is a popular solution technique for problems that are other-

wise intractable through more “traditional” optimization methods. The difficulty in

effective implementation is tuning it for a particular problem. Inventing appropriate

moves, a good objective function, and an appropriate cooling schedule requires as

much trial-and-error as analytical sense, making a quality implementation somewhat

of an art. Even so, studies have shown that good solutions can be obtained with a

computational effort that grows very slowly relative to problem size. Simulated an-

nealing is very widely used in hardware design algorithms, in particular placement of

cells in a physical layout, therefore we use it here in order to automatically optimize

the tradeoffs between area and error in a fixed-point data path.

5.5.2 Simulated Annealing for Automatic LSB Optimization

We have developed an automated optimization approach using simulated annealing

principles similar to those found in [9] to area-optimize a data flow graph.

The possible moves in the system are the various optimization methods. At each

temperature we choose randomly between altering the amount of zero-substitution at

the inputs and changing multiplier structures. The cost function for determining the

quality of moves is determined by the area estimate of the entire data path combined

with a user-specified error constraint. This error constraint is identified as an error

range at a particular node, dubbed the error node. The cost function is defined in

(5.4), where error is the absolute value of the difference between the maximum error

and the target error at the error node. We have determined through experimentation

that β = 0.25 gives a good balance between an area efficient implementation and

meeting the error constraint.

cost = β ∗ area + (1− β) ∗ error (5.4)
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When modifying an input, we allow the annealer to randomly choose to increase

or decrease the number of bits substituted with constants by one bit. Thus, an input

A502 can move to A601 or A403.

When modifying the structure of a multiplier, we randomly choose a multiplier and

adjust its degree of truncation. As with the inputs, we allow the annealer to increase

or decrease by one the number of columns truncated from the partial product array.

This allows a smooth transition from the traditional array multiplier to a highly-

truncated multiplier.

At each temperature, after the move has been completed, we perform a greedy

renormalization. Recalling from previous sections, there are several instances where

the effect of renormalization can be achieved without an area impact. For each adder

that may be renormalized without area penalty, we perform renormalization and ob-

serve the impact on the error node of interest. The adder that exhibits the most

reduction in maximum error at the error node through renormalization is renormal-

ized. This process is repeated until either the list of candidate adders is exhausted,

or there can be no error improvement through renormalization. After the annealer

has finished, we optionally apply active renormalization at the error node if it yields

a lower overall implementation cost.

5.6 Experimental Results

We have implemented automated optimization of the LSB position as a subset of

our design-time tool presented in [17]. To test the effectiveness of our methodologies,

we have used the techniques described here to optimize several benchmark image

processing kernels. These include a matrix multiply, wavelet transform, CORDIC,

and a one-dimensional discrete cosine transform.

A typical use of our methods would begin with the user performing basic trun-

cation. As mentioned before, while basic truncation does afford an area savings
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throughout the data path, there is very little guidance as to which inputs to manip-

ulate, and how changes might affect the overall performance of the implementation.

The starting points we have used in these experiments are truncating zero, one, and

two bits from every input. These can be seen in Figs. (5.18-5.21) as the “Basic

Truncation” points on the plots.

From these initial estimates of area and error, we performed the automated opti-

mization using these points as guidelines for error constraints. The flexibility of the

constant-substitution method allows us to choose any error constraint, giving us far

more area/error profiles to consider for implementation. As can be seen in the plots,

the automated optimization method is able to obtain better area/error tradeoffs than

the basic truncation method. The overall results show an average of 44.51% better

error for the same amount of area, and an average 14.66% improvement in area for

the same level of error versus the simple truncation technique. The overall trend is

an improvement over truncation except in a few spurious cases. We attribute this

to the need for further tuning of some of the parameters in our simulated annealing

algorithm to obtain more robust results. In particular, tuning the β parameter to

adjust the weighting of meeting the error constraint vs. obtaining an area-efficient

data path. In the future, perhaps this parameter could be influenced by the user.

5.7 Limitations

While the results presented are consistently good, there are a number limitations

that warrant discussion. The current implementation of error calculation is limited in

that the error calculated at later nodes has only a range of error from previous nodes

available for consideration. More specifically, the error contributed by previous nodes

is propagated only by value rather than by reference. The result is that correlations

and relationships between error contributing nodes are not preserved. For example,

in the simple statement y = x− x, the current implementation would not be able to
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Figure 5.18: Optimized results for matrix multiply
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Figure 5.19: Optimized results for wavelet transform
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Figure 5.20: Optimized results for CORDIC
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Figure 5.21: Optimized results for 1-D discrete cosine transform
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realize that the result y should be zero, regardless of the level of error, or uncertainty,

of the input operand x. This is a shortcoming of the interval analysis technique

employed to propagate error through the system. This same shortcoming has plagued

other work, e.g. M. Stephenson’s BitWise compiler [65, 66]. Recently, Fang, et. al.

[32–34] have demonstrated a technique called affine arithmetic to overcome some

of the limitations of the interval analysis technique. By preserving the correlations

between variables it is possible expose these macro-scale relationships and arrive at a

better error estimate.

Another limitation is in the small number of optimization options presented. While

the results shown remain positive, perhaps more alternative arithmetic structures

could be proposed that would yield more varied area/error profiles. Further, no sense

of timing or performance is included in the optimization. While the presented adder

and multiplier structures generally have delay proportional to their area requirements,

this may not be true for other arithmetic structures. Bit- and digit-serial arithmetic

structures, for instance, can yield higher precision at the cost of performance. These

types of structures cannot be adequately evaluated without considering the timing of

the circuit.

The formulation of the error as a value constraint may be limited in usefulness

for real-world algorithms. Possible alternatives could include signal-to-noise ratio,

bit-error rate, or any number of statistical measures. The impact of a different error

constraint on the performance of the automated optimization is an open question.

The ability of the user to specify an area constraint instead of, or in addition to, an

error constraint is another possible enhancement to the techniques presented in this

chapter. By having both constraints, the automated optimization may be able to pri-

oritize one constraint over another depending on the ease of reaching either constraint.

If the area constraint is used instead of an error constraint, the automated technique

should then yield an error minimizing implementation. Both of these options would

widen the usability of the tools presented.
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Finally, another consideration is in use of simulated annealing to automate the

optimization process. Other algorithms may be more suited to automating the op-

timization, but have not been investigated. One possible candidate is the use of a

genetic algorithm approach. The objective function is similar to the simulated an-

nealing cost function; the genetic representation, genome, can be the implementation

details, including input bit substitutions, operator selection, and renormalization fac-

tors; and genetic mutators can be defined similarly to the moves in the simulated

annealing approach. This method has not been investigated, but provides an inter-

esting alternative to the simulated annealing approach.

5.8 Summary

In this chapter we have motivated the need to investigate the optimization of the least-

significant bit position within a data path. While most-significant bit optimization in

the previous chapter only used area to judge the quality of an implementation, area

and error both play an important role in picking the position of the least-significant

bit. How a developer makes the area-to-error tradeoff over a large number of data

path nodes is a difficult question to answer manually, leading to the development

of the methodologies and tools described in this chapter to support the automatic

optimization of the LSB position.

A novel alternative to truncation—constant-substitution—was presented. Constant-

substitution affords the developer more control over the area-to-error tradeoff during

data path optimization than simple truncation. Models were presented to facilitate

area and error estimation of data paths for automated optimization using a number

of optimization techniques. These include primary input constant substitution, area-

efficient renormalization, and alternative arithmetic structures. Simulated annealing

was used to automate the optimization of a data path subject to a user-supplied error

constraint using these optimization techniques. Experimental results show that the
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automated optimization can achieve better area-to-error performance than simple

truncation. Improvements average 44.51% better error for the same area require-

ment, and 14.66% improvement in area for the same level of error. More importantly,

the techniques and tools presented in this chapter give the developer a simple and

automatic way to achieve a specific error bound while maintaining an area-efficient

implementation, leading to a broader range of options to consider while implementing

an algorithm in a fixed-point system.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

This dissertation has offered a disciplined look at the problem of precision analysis

as it applies to data path optimization for reconfigurable hardware systems such as

FPGAs. This includes an in-depth review of the current state of research in preci-

sion and bit-width analysis, along with investigations into areas which were previ-

ously ignored, including designer-centric assistive optimization tools and techniques

for least-significant bit position optimization.

Chapter 3 presented an in-depth look at one of the more difficult hurdles in hard-

ware development—data path optimization. The notion of bit-level operations ver-

sus the general-purpose processor model of word-level operations, and the shift from

the time-multiplexed fixed-resource computational system of the GPP, to the spa-

tial computation paradigm of hardware devices such as FPGAs is often difficult to

grasp. Chapter 3 also provided an overview of previously documented research efforts

categorized into three basic approaches: analytical, simulation-based, and hybrids.

We point out the common components missing from these previous works, iterative

assistive tools that attempt to optimize the position of the least-significant bit.

In Chapter 4 we introduced our designer-centric tool, Précis. A prototyping tool

for our most-significant bit optimization methodologies, Précis is unique: it enables

semi-automatic, user-centric, design-time precision analysis and data path optimiza-

tion. Combining a propagation engine, range finding, fixed-point simulation support,

and a novel slack analysis phase, the tool keeps the developer in the loop during

optimization. By providing feedback and hints on where the user’s manual optimiza-
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tion efforts should focus, Précis demonstrated effective guidance toward area-efficient

implementations, shortening the design iteration time.

In Chapter 5 we introduced novel methods to optimize the position of the least

significant bit. Through the use of constant-substitution instead of truncation, the

developer retains much more tunability of the area-to-error profile of the data path.

This method, combined with area-efficient renormalization and alternative arithmetic

structures, optimizes the least-significant bit position given a user-specified error con-

straint using simulated annealing. Experimental results are promising, and show

improvement when compared to simple truncation.

In presenting our methods for optimizing both ends of the data path, more than

just area and error improvements have been achieved. The goal of this work was to

provide an assistive technology that helps developers implement software-prototyped

algorithms in hardware devices. Précis, through the slack analysis method, gives

the user important feedback on performing the data path implementation, and what

order achieves the largest gains in area for the smallest number of optimization iter-

ations. This falls directly in line with the iterative nature of hardware development

and is immediately useful. The techniques introduced in Chapter 5 yield not only

better results when compared directly to truncation, they give the developer a useful

alternative to truncation that can be used to automatically generate implementation

details given an error constraint.

While this work and the work of others have focused on casting floating-point

algorithms in a fixed-point paradigm, there are several alternative avenues to FPGA

arithmetic that have yet to be investigated. As the capacity of FPGAs continues to

grow, floating-point operations implemented directly in the FPGA fabric are becoming

a distinct reality. Several authors have investigated implementation of floating-point

arithmetic units in FPGAs fabrics [8,31,52]. Implementation through parameterized

generators or commercially-available floating-point arithmetic cores is only part of

the solution. How developers should optimize the use of these resource-hungry com-
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putational units is still a largely unanswered question. With floating-point operators

added to the palette of arithmetic units, the range of possible implementations in-

creases. Just as a tool is necessary to investigate these tradeoffs in the fixed-point

case, it would be even more useful with floating-point operators. Extension of the

techniques presented in this dissertation to include area and error models of floating-

point operators is one clear avenue to answering this question.

The natural counterpoint to developing floating-point tools for fixed-point FPGAs

is developing next-generation FPGA architectures that are tuned for floating-point

arithmetic. Several FPGA vendors already provide versions of their devices that in-

clude fixed-function silicon “hard cores”, ranging from multiply-accumulate structures

to embedded processors [3, 29, 79–81]. These fixed-function blocks can be interfaced

with the general FPGA fabric and have been proven to be effective in reducing gen-

eral fabric area consumption by alleviating the need to implement area-consumptive

functions in the generally less-efficient FPGA fabric. A perfect candidate for fixed-

function implementation are floating-point arithmetic operators.

An FPGA architecture with “real” fixed-function floating-point blocks should yield

great performance increases in many applications. Naturally, this architecture would

be able to increase the accuracy of computations by providing a true floating-point,

rather than an error-inducing fixed-point, data path. As a positive side-effect, not

requiring the emulation of floating-point within the FPGA fabric will free a lot of

area for additional processing. Combined, these benefits could dramatically increase

accuracy, performance, and utilization.

Perhaps more importantly, providing a floating-point capable FPGA brings about

a critical turning point in the usability of FPGAs. By not having to consider the

tradeoffs between floating- and fixed-point arithmetic, hardware implementation could

be greatly simplified through the use of smart, high-level synthesis tools that exploit

the floating-point data path. Of course, the current research into precision and bit



94

width analysis would still provide useful avenues for optimal use of what will most

likely be scarce floating-point resources.

FPGAs have the potential to bring about a revolutionary change in the way com-

puting workloads are partitioned. The line between hardware and software grows less

distinct with each advance in FPGA tools and technology. Research in both FPGA

architectures and the software that supports them is crucial in bringing about the

wider adoption of FPGAs within all computing communities.



95

BIBLIOGRAPHY

[1] N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. IEEE

Transactions on Computer, C-23:90–93, January 1974.

[2] Alta Group of Cadence Design Systems, Inc. Fixed-Point Optimizer User’s

Guide, August 1994.

[3] Altera Corporation, San Jose, California. Excalibur Devices, Hardware Reference

Manual, Version 3.1, November 2002.

[4] Ray Andraka. A survey of CORDIC algorithms for FPGAs. In ACM/SIGDA

Sixth International Symposium on Field Programmable Gate Arrays, 1998.

[5] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amarasinghe.

Parallelizing applications into silicon. In Proceedings of the IEEE Workshop on

FPGAs for Custom Computing Machines, 1999.

[6] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Chang,

M. Haldar, P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periyacheri, and

M. Walkden. MATCH: A MATLAB compiler for configurable computing sys-

tems. Technical Report CPDC-TR-9908-013, Northwestern University, ECE

Dept., 1999.

[7] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar,

P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden, and

D. Zaretsky. A MATLAB compiler for distributed, heterogeneous, reconfigurable



96

computing systems. In IEEE Symposium on Field-Programmable Custom Com-

puting Machines, pages 39–48, 2000.

[8] Pavle Belanovic and Miriam Leeser. A library of parameterized floating point

modules and their use. In International Conference on Field Programmable Logic

and Application, June 2002.

[9] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and rout-

ing tool for FPGA research. In Seventh International Workshop on Field-

Programmable Logic and Applications, pages 213–222, 1997.

[10] William Joseph Blume. Symbolic analysis techniques for effective automatic par-

allelization. Master’s thesis, University of Illinois at Urbana-Champaign, 1995.

[11] Stephen Brown and Jonathan Rose. Architecture of FPGAs and CPLDs: A

tutorial. IEEE Design and Test of Computers, 13(2):42–57, 1996.

[12] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic.

Field-Programmable Gate Arrays. Kluwer Academic Publishers, May 1992.

[13] W. Carter, K. Duong, R.H. Freeman, H.C. Hsieh, J.Y. Ja, J.E. Mahoney, L.T.

Ngo, and S.L. Sze. A user programmable reconfigurable gate array. In IEEE

1986 Custom Integrated Circuits Conference, 1986.

[14] Celoxia. Handel-C Compiler, September 2003.

[15] Mark L. Chang. Adaptive computing in NASA multi-spectral image processing.

Master’s thesis, Northwestern University, Dept. of ECE, December 1999.

[16] Mark L. Chang and Scott Hauck. Adaptive computing in NASA multi-spectral

image processing. In Military and Aerospace Applications of Programmable De-

vices and Technologies International Conference, 1999.



97
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