
A Parameterized Stereo Vision Core for FPGAs
Stephen Longfield, Jr. and Mark L. Chang

Franklin W. Olin College of Engineering
Needham, MA 02492

Email: mark.chang@olin.edu

Abstract—We present a parameterized stereo vision core
suitable for a wide range of FPGA targets and stereo vision
applications. By enabling easy tuning of algorithm parameters,
our system allows for rapid exploration of the design space
and simpler implementation of high-performance stereo vision
systems. This implementation utilizes the Census Transform
algorithm [1], [2] to calculate depth information from a pair of
images delivered from a simulated stereo camera pair. This work
advances [3] through implementation improvements, a stereo
camera pair simulation framework, and a scalable stereo vision
core.

I. INTRODUCTION

In the pursuit of machine vision systems that can per-
form near the fidelity of biological vision systems, one area
of intense study is the acquisition of an accurate three-
dimensional model of an unstructured environment. While
many machine vision algorithms and systems have sufficed
with a two-dimensional understanding of the world around
them, advanced robotics, navigation, and the machine intelli-
gence that drives them, would greatly benefit from enhanced
spatial perception.

Native three-dimensional perception systems such as LI-
DAR remain cost- and form-factor-prohibitive for many ap-
plications. Fortunately, CMOS camera technology is both
inexpensive and favorably packaged for embedded, mobile
vision systems. Just as the human vision system creates three-
dimensional vision through a pair of eyes that each perceive
only two dimensions, stereo vision attempts to infer depth from
the disparities between two camera images.

In this paper, we present a significant improvement in the
design-time use of stereo vision on FPGAs through a fully
parameterized stereo vision core. As a natural extension of
our previous work [3], this system enables fast exploration of
the design space allowing for better tuning of the stereo vision
core to application needs and target hardware resources. This
section introduces stereo vision algorithms and related work in
hardware acceleration of stereo vision. Section II discusses the
hardware and software implementation of our scalable stereo
core and presents simulation and synthesis results. Section III
details our ongoing and future work.

A. Previous Work

This work extends our previous work [3] through algorithm
implementation improvements, a generalized stereo camera
pair simulation framework, and by exposing all tunable param-
eters of the stereo core to the end user for easy modification.
As this implementation serves as only the core of larger stereo

vision platform, features such as real hardware interfacing with
cameras, USB output to a host computer, and host software
for post-processing stereo images is not included. However,
as each platform’s needs are unique, we do not see this as
a severe limitation and only note it as a difference from our
previous work.

B. Stereo Vision

Reconstructing depth information from a pair of two-
dimensional images is an area of active research both in
basic algorithms and in their acceleration with hardware. The
basic stereo sensing mechanism mimics biological systems
with a pair of cameras, separated by some distance, viewing
approximately the same “scene”. Because of the separation
of the cameras, an object will appear to have a lateral shift
inversely proportional to its distance from the cameras. You
can experience this phenomenon by holding an object close to
your face and viewing it with only the left eye, then with only
the right eye. The object will appear to have a larger lateral
shift the closer it is to your eyes.

By finding the lateral displacement (or disparity, as it is
more commonly referred) of an object between camera images,
it is simple geometry to calculate the range of an object from
the camera. Objects that are relatively far from the camera will
occupy nearly the same location in both images, while objects
that are relatively close will have a large disparity.

Finding an object in both camera images is called corre-
spondence. As described in [4], most correspondence algo-
rithms fall into two basic approaches: area-based or feature-
based. Area-based algorithms take windows of pixel intensities
in one camera image and attempt to find correspondence in a
window of the same size in the other camera image. Feature-
based algorithms abstract pixel intensities into features such
as edges, corners, lines, contours, or patches, and attempt to
find the corresponding features in the other camera image.
The potential benefits of feature-based algorithms is that these
features will have less variation than raw pixel intensities and
will therefore be more robustly correlated across image pairs.

For any of these approaches to be effective, both cameras
must deliver images in the same exact global coordinate
system. This entails removing or compensating for image dis-
tortion, such as rotation, scaling, and vertical translation. This
is often accomplished through careful mechanical alignment
of the camera pair and a calibration phase to compensate for
lens and imager differences.



C. Census Transform

A thorough investigation of a variety of algorithms from [1],
[5]–[7] led to the selection of the Census Transform [1], [2] for
implementation. The Census Transform is in the class of area-
based algorithms and is well-suited for acceleration in FPGAs,
as the majority of the operations performed consist of bit
manipulations and simple arithmetic. The Census Transform
also exhibits relative insensitivity to absolute differences in
imaging devices, and operates well on images with high
dynamic range.

The Census Transform begins by considering a window
around the pixel under test from one (the primary) image.
An example of a window with radius “1” is the following,
centered on a pixel with intensity 130:

127 129 131
126 130 129
126 131 133

This window of intensities is then transformed into a bit
string by computing whether each of the neighbor pixels in
the window is greater or less than the center value. For this
example, pixels with lower intensities are given a value of
1, and pixels with higher intensities are given a value of 0.
Pixels with intensity values equal to the intensity value of the
center pixel can be treated as either a 1 or 0, but must remain
consistent. The transformed matrix would therefore be:

1 1 0
1 X 1
1 0 0

This matrix is then rearranged into a bit string to capture
the entire window, resulting in the eight-symbol pattern:
“11011100”. With this pattern that represents the window
about the pixel under test in the primary image, we must find
the closest matching pixel window in the secondary image by
calculating the corresponding bit strings for several possible
matching center pixels in the secondary image and comparing
bit strings. For our implementation, we used the Hamming
distance between the bit strings as a comparison measurement.
The Hamming distance is simply the number of places in the
bit string where bits in the same position differ. Pixel windows
with similar intensities relative to the center pixel will have
similar bit strings, which in turn will yield smaller Hamming
distances.

The same pixel position in the secondary image yields a
disparity of zero and an infinite range estimate. The algo-
rithm continues to shift and compare until a predetermined
maximum disparity is reached, at which point the search
is stopped. Now, among the set of Hamming distances, the
smallest corresponds to the pixel under test’s most likely
disparity value.

D. Parameterization

The need for parameterization can be most acutely demon-
strated during prototyping of robotic platforms. In deciding
and evolving platform characteristics such as the physical

camera separation (baseline), the camera type (possibly chang-
ing pixel depth and resolution), the physical environment
(indoor vs. outdoor), the expected speed of the robot, and
the available FPGA resources, basic algorithmic parameters
require constant manipulation to achieve the desired results.
Making these changes requires non-trivial modification to the
hardware design of the stereo vision core.

By being able to quickly generate the hardware stereo core,
it becomes possible to perform experiments in situ, in hard-
ware, with little delay. Additionally, by storing a large number
of configurations, platforms can now determine and utilize, in
the field, the best parameters for operating conditions.

E. Related Work

As many contemporary stereo vision algorithms have heavy
computational requirements, a number of acceleration efforts
have been documented to date. Of interest are FPGA-based
implementations [8]–[10], and dedicated commercial ASIC
solutions (Tyzx Deep Sea products), none of which offer the
parameterization of our implementation.

Algorithmically, the most closely related work is [8]. The
Census Transform was used here on the PARTS Reconfig-
urable Computer, consisting of 16 Xilinx 4025 FPGAs and
16MB of SRAM. Our implementation is a generalization of
this basic idea to be able to target both low-cost, small FPGAs,
and large, high-performance FPGAs, while obviating the need
for external memories.

In [9], [10], the authors implement phase-based correspon-
dence algorithms that differ significantly from the Census
Transform in both design and arithmetic complexity. These
implementations, however, are single instances and do not
allow for easy parameter tuning.

Stereo vision remains an active area of research whose
breadth and depth is beyond the scope of this paper. Interested
readers are encouraged to explore [7] for an a broad survey of
the field of study and a quantitative and qualitative comparison
of approaches.

II. IMPLEMENTATION

The implementation of the stereo vision core was done in
Verilog, simulated with ModelSim, and synthesized using the
Xilinx toolchain. Parameterization was accomplished using
a combination of basic Verilog generate constructs and
Verilog code generation with software written in Python. The
parameters that are available to the end-user to modify include:

• pixel depth
• image width
• image height
• search window size
• maximum disparity
The pixel depth parameter adjusts the maximum dynamic

range. Typically, this would be 8 bits per pixel. As the
implementation also generates a simulation model for typical
OmniVision-brand CMOS imagers (as previously used in [3]),
the image width and image height parameters are used for the
simulation of row and frame timing information. The search



Camera
0 line buffer

line buffer

line buffer

1 1 0 1 1
0 1 0 1 0
0 0 0 0
1 1 0 0 1
0 1 1 1 1

xorxorxorxorxor

1 1 0 1 1
0 1 0 1 0
0 0 0 0
1 1 0 0 1
0 1 1 1 1

1 1 0 1 1
0 1 0 1 0
0 0 0 0
1 1 0 0 1
0 1 1 1 1

1 1 0 1 1
0 1 0 1 0
0 0 0 0
1 1 0 0 1
0 1 1 1 1

1 1 0 1 1
0 1 0 1 0
0 0 0 0
1 1 0 0 1
0 1 1 1 1

1 1 0 1 1
0 1 0 1 0
0 0 0 0
1 1 0 0 1
0 1 1 1 1

Bit
Count min disparity

Camera
1

(a)

(b)

(c)

(d)(e)

(f) (g)

Fig. 1. Graphical representation of data flow in the Census Transform.

window size parameter specifies both the width and height of
the square window of pixels surrounding the pixel under test.
Finally, the maximum disparity parameter specifies the amount
of lateral shift that will be searched to find correspondence in
the secondary image.

Figure 1 depicts the flow of data from cameras to dis-
parity calculation and closely mirrors the previous descrip-
tion. Both Camera 0 and Camera 1 are assumed to operate
synchronously—that is, they deliver the same pixel coordinate
at the same time, and have synchronized pixel clocks. This
implementation is streaming in nature, and will deliver a
disparity calculation at every pixel clock with some fixed
latency. Starting from Camera 0, a pixel is generated with
every pixel clock.

Pixels must be stored in line buffers (b) until there are
enough pixels for a window to be formed around the pixel
under consideration. A single line buffer width is the same as
the image width, and we require search window size number
of them. The Xilinx synthesizer is able to utilize BlockRAM
to implement these line buffers efficiently.

Once enough pixels are available to begin filling a window
around the pixel under consideration, a register bank of (search
window size)2 registers (c) is filled, a column at a time,
from the line buffers. At every column fill, the binary relative
intensity is calculated and stored in a register array the same
size as (c) (not shown).

At the same time, Camera 1 has been delivering pixels in an
identical fashion to a different instance of the same structure
of line buffers and pixel window registers (d) (not shown, and
indicated by the dashed line). The only difference is that there
are maximum disparity copies of the pixel window registers.
As soon as there are enough pixel windows available from
Camera 1 to compare against the pixel window from Camera
0, the current pixel window from Camera 0 is XOR’ed against
all maximum disparity number of pixel windows from Camera
1 (e).

Fig. 2. “Cones” from [11]: (left) original image; (center) output, window size
10x10, maximum disparity 90; (right) output, window size 60x60, maximum
disparity 90.

The number of differences resulting from these parallel
XORs are calculated in (f), giving a scalar value that represents
the level of mismatch between the pairs of images. The index
of the minimum of these values is then taken (g) and delivered
as the resultant disparity estimate at the position of the pixel
under consideration from Camera 0.

A. Simulation and Verification

The design was simulated and verified using ModelSim SE
6.4c with a variety of parameter configurations using images
from [11], [12]. Simulation output demonstrating the effects
of parameter modification can be seen as raw output in Fig.
2. No pre- or post-processing that might typically accompany
range estimation has been done except to scale disparity values
to occupy the full gray scale.

Comparing the middle and right images of Fig. 2, one can
easily see the smoothing impact of an increased window size.
Less noise is present, while less detail is also found. The right
image is vertically offset as the algorithm does not currently
begin processing until there is a full window for evaluation.
Therefore, going from 10 to 60 pixels in the window increases
the “band” at the top of the image by 50 pixels.

B. Parameter Evaluation

The design was synthesized for a variety of parameters using
the Xilinx ISE 9.2.04i. The target FPGA was a Xilinx Spartan-
3 XC3S2000, chosen to match [3]. In Fig. 3, we can see
some reasonable trends in logic utilization versus maximum
disparity for a variety of pixel window sizes.

Fig. 3 utilizes an image size of 320x240, pixel depth
of 8 bits, maximum disparities from 2 to 40 pixels, and
window sizes from 7 to 19 pixels. As the maximum dis-
parity increases, the number of registers required to store
pixel windows increases. The number of XORs required to
compute the mismatch between pixel windows increases with
maximum disparity, and the size of each XOR scales with
the size of the pixel window. Additionally, the number of
bit counters required to calculate the scalar correspondence
between pixel windows increases with maximum disparity,
and the complexity scales with the size of the pixel window.
Therefore, an increase in either maximum disparity or window
size should demand more resources. For large window sizes
and large maximum disparity, the number of data points is
fewer than others as the resource requirements exceeded the
capacity of the target FPGA. BlockRAM usage is not shown,



0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Utilization vs. Maximum Disparity for Various Window Sizes

Pe
rc

en
t U

tili
za

tio
n

Maximum Disparity

 

 

7
9
11
13
15
17
19

Fig. 3. FPGA logic utilization versus maximum disparity for various window
sizes. Image: 320x240, pixel depth: 8 bits, disparities (2-40), window size (7-
19).

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Window Size

Utilization and Clock versus Window Size

Pe
rc

en
t U

tili
za

tio
n

 

 

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

Cl
oc

k 
Fr

eq
ue

nc
y 

(M
Hz

)

 

 

Utilization

Frequency

Fig. 4. FPGA utilization and clock frequency versus window size for
maximum disparity of 20. Image: 320x240, pixel depth: 8 bits, window size
(3-13).

however, it scales similarly to logic and is dependent primarily
upon window size.

Finally, it is noteworthy to compare our results to our
previous implementation [3]. With the same parameters, our
current implementation uses nearly exactly the same logic
resources (59% versus 57%), the same amount of BlockRAM
(26 out of 40), and runs at 58MHz instead of 26MHz. The
frequency discrepancy is due to the fact that our previous
design included support logic to drive the USB host interface.
At 58MHz, the current design can support over 300 320x240
grayscale frames per second.

To get a more detailed notion of trends, a single maximum
disparity of 20 pixels is chosen for Fig. 4, which plots FPGA
utilization and clock frequency versus window size between
3 and 13 pixels square. Again, the trends are as expected,

with utilization scaling with window size, and the clock
frequency trending downward, although with significant noise
attributable to the probabilistic nature of the place and route
processes.

Finally, run times for each implementation with the Xilinx
suite of tools on a 3.4GHz Intel Xeon workstation were
between 5 and 30 minutes, depending on utilization. Code
generation completes in under a second.

III. CONCLUSIONS AND FUTURE WORK

We have presented our work in developing a parameterized
stereo vision core which allows for the rapid exploration of
the design space of stereo vision systems. Our implementation
functions as expected, and can dramatically decrease the time
necessary to implement stereo vision systems.

We are currently developing area and performance models
to facilitate accurate estimation of resource utilization so users
may make more informed design decisions without needing to
perform an implementation. We are also expanding our code
generator to implement a suite of stereo vision algorithms
that include optical flow, phase-based, and other approaches,
allowing the user to explore an even wider range of solutions
with ease.

REFERENCES

[1] R. Zabih and J. Woodfill, “Non-parametric local transforms for com-
puting visual correspondence,” in ECCV ’94: Proceedings of the third
European conference on Computer Vision (Vol. II), 1994, pp. 150–158.

[2] R. Zabih, “Individuating unknown objects by combining motion and
stereo,” Ph.D. dissertation, Stanford University, 1994.

[3] C. Murphy, D. Lindquist, A. M. Rynning, T. Cecil, S. Leavitt, and M. L.
Chang, “Low-cost stereo vision on an FPGA,” in Proc. 15th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
FCCM 2007, 23–25 April 2007, pp. 333–334.

[4] R. D. Henkel, “Fast stereovision by coherence detection,” in CAIP ’97:
Proceedings of the 7th International Conference on Computer Analysis
of Images and Patterns. London, UK: Springer-Verlag, 1997, pp. 297–
304.

[5] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in compu-
tational stereo,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, no. 8, pp. 993–1008, 2003.

[6] K. Mühlmann, D. Maier, J. Hesser, and R. Männer, “Calculating dense
disparity maps from color stereo images, an efficient implementation,”
International Journal of Computer Vision, vol. 47, no. 1-3, pp. 79–88,
2002.

[7] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[8] J. Woodfill and B. V. Herzen, “Real-time stereo vision on the parts
reconfigurable computer,” in IEEE Symposium on FPGAs for Custom
Computing Machines. IEEE, April 1997.

[9] A. Darabiha, J. Rose, and J. W. Maclean, “Video-rate stereo depth
measurement on programmable hardware,” in Proc. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 1,
18–20 June 2003, pp. I–203–I–210.

[10] D. K. Masrani and W. J. MacLean, “Expanding disparity range in an
FPGA stereo system while keeping resource utilization low,” in Proc.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 25–25 June 2005, pp. 132–132.

[11] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps us-
ing structured light,” in Proc. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 1, 18–20 June 2003, pp.
I–195–I–202.

[12] C.-C. Wang. Vision and autonomous systems center’s image database.
Carnegie Mellon University. [Online]. Available: http://vasc.ri.cmu.edu/
idb/


