A Long Duration Study of User-Trained 802.11 Localization

Andrew Barry Olin College of Engineering

MELT 2009 Sept. 30, 2009

Overview

- Wireless localization with fixed 802.11 access points
- Euclidean distance—nearest neighbor in signal space (NNSS) algorithm.
- Running on personal laptops
- Crowdsourced data collection

Frontend Map Interface

- Friend-finding search
- All active users on one screen
 - Repeated floor visualization shows vertical displacement

Frontend Map Interface

• Custom icons allows rapid user identification

Client – Interface

- Requirements
 - Non-intrusive
 - Intuitive
 - Lightweight
- Training support
 - Confirmation
 - New point creation

MM@Olin	
File Help	
abarry	Up to No Good
Are you inside AC313?	Yes No
Update	Map

- Simple and easy
 - User is doing us a favor
- Start with a location estimate:

- If Yes, send data
- If No, offer nearby locations

- If user finds location, send data
- If not, the current location is not in the system and should be added

Create New Point				
Building	Floor (LL = 0) 3	Room # or description (ex. "309" or "316A" or "Library") 313	✓ Inside Room	
OK Cancel				

- New point creation
- Must be well labeled
 - Users do not know
 where they are on a floorplan

Click on location of "inside AC313"

Localization Algorithm

- Euclidean distance in 76-dimensional space
- 76 = number of access points
- Similar to RADAR's Nearest Neighbor in Signal Space (NNSS) algorithm.

Training

- New fingerprint sent to the server
- Always append to known-location database
 - Duplicate points and confirmations added without regard to current database
 - Allows multiple training points for each location

Initial Training

- 2 hours of training
 - About 200 points
- Convince users system works well enough to train it themselves
- 10-20 meter accuracy
- Initial set is now only 2.1% of location database

Deployment

- Launched in April 2008 at Olin College after short beta test
- Olin College
 - 300 students
 - 5 buildings enclosing 300,000 square feet
 - 76 wireless access points

Deployment

- 200 total unique users
- Currently have approximately 100 active users
- 95% of users train the system
- Received 9,300 training updates
- Computed 1,000,000+ locations
- 14,000 friend-finding pages served

Who Trains?

• 20% of users bind two-thirds of the data

Who Trains?

• Especially when those users are new

Where do they train?

- In the same places they localize
- 51% of all localization attempts are in areas where the localizing user has provided data

Where do they train?

Training Density (West Hall)

Localization Density (West Hall)

Accuracy

- True accuracy is not a random selection of rooms
 - Accuracy in a small trash-room is not important
 - How do we measure that?
 - Ask our users to test accuracy where they are at one moment

• Within 10 meters in 94% of cases

Errors

- Platform specific radios
 - Calibration needed
- Significant number of MAC addresses changed in firmware maintenance
- Access point locations moved
 - Old data does not expire
- User error when training

Privacy

- Opt-in
- Internal to campus network
- Users can remove themselves at any time

Looking Ahead

- Ad-hoc and prescribed calibration
- Multiple devices per user
 - Port to more devices (Andriod complete)
 - observations/predictions
 - Is the user with their phone or PC?
 - When will the user return to their PC?

Looking Ahead

- Predicting user movement
 - Estimate location without current data
 - Trend identification-tell people their schedules
- New training methods
 - Calendar integration
 - Assign ground-truth data when user goes to appointments that have location tags
 - Must determine if user did go to appointment (and brought wireless device)

Acknowledgements

- Ben Fisher
- Mark L. Chang
- F. W. Olin College

the developers at

Mysqe 🦚

nthon 🔮

A Long Duration Study of User-Trained 802.11 Localization

Andrew Barry

MELT 2009 Sept. 30, 2009

Localization Algorithm

32

- Euclidean distance in 76-dimensional space
- 76 = number of access points $D(N) = \sqrt{(C[1] - F[1])^2 + (C[2] - F[2])^2 + \dots + (C[76] - F[76])^2}$
- Minimum D(N) is best location estimate
- C[x]: Array of candidate location's signal strengths
- F[x]: Array of user's location signal strengths
- Similar to RADAR's Nearest Neighbor in Signal Space (NNSS) algorithm.

Localizer Implementation

• Implemented Euclidean distance algorithm in SQL

SELECT placename, min(pow(C1 F1, 2) + pow(C2 - F2, 2) + ... + pow(C76 - F76, 2) AS score FROM point WHERE 1 GROUP BY placename ORDER BY score ASC LIMIT 10

Composition of a Fingerprint

- List of
 - MAC addresses
 - Signal strengths

MAC Address	Signal Strength (dBm)	SSID
00:0B:0E:11:9B:80	-57	OLIN_EH
00:0B:0E:11:82:00	-74	OLIN_EH
00:0B:0E:11:8C:40	-63	OLIN_WH

Client Implementation

- wxPython allows cross-platform codebase
- Emphasis on lightweight, non-intrusive, and easy.

Communication Protocol

- System communication via HTTP GET
 - Same interface used to load webpages
- Information (fingerprints, etc) embedded in URL
- Server responds by producing an HTML page that the client interprets

Communication Protocol (cont.)

Backend Services

- Implemented on a LAMP (Linux, Apache, MySQL, PHP) stack
- Database of all known locations and associated fingerprints
- Renders frontend map interface

Database makeup

Location	AP 1	AP 2	 AP 76
AC312	34	55	 23
AC128	56	63	 52
AC109	25	23	 46

