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A Semi-Automatic Approach for Project
Assignment in a Capstone Course

Abstract

This paper presents a semi-automatic approach to assigning students to project teams for a
year-long, industry-sponsored senior capstone course. Successful assignment requires knowl-
edge of at least individual project requirements, student skills, student personalities, and
student project preferences. This mix of hard skills, soft skills, and interpersonal impres-
sions requires human involvement to produce a high-quality assignment. The importance of
faculty input often requires that the assignment process be labor- and time-intensive.

Our approach attempts to reduce the time required to perform this assignment by selectively
automating parts of the task flow. An automated search uses a randomized greedy algorithm
combined with local optimizations to explore a large space of solutions. Candidate “good”
solutions are then presented to capstone faculty. Criteria such as skill set, student capability,
and personality compatibility are applied by human evaluators to reduce the candidate
solution set. These candidate solutions are then distributed to small groups of faculty to
look for improvements using system-generated tables of options.

This approach leverages automation at appropriate stages while keeping the experts—the
faculty—involved in the selection process. Our initial implementation has reduced the time
needed to select an allocation by about a factor of three over previous manual approaches.

Introduction

As engineering programs at colleges and universities strive to make pedagogical reinventions,
faculty are experimenting with active learning methods to bring authentic engineering expe-
riences into the classroom. A prominent feature of many project-based learning approaches
is the use of student teams to solve complex problems. One of the significant challenges is
therefore the assignment of students to teams.

In an experience such as a final-year senior engineering capstone, the administrative burden
of team formation is often exacerbated by the needs of a more complex, department- or
college-wide capstone program. Issues may include larger teams, interdisciplinary needs of
projects, satisfying external constituencies, budgeting, and more. These higher stakes make
a high-quality team selection process even more important.

In this paper we present a semi-automatic approach for placing students onto project teams.
The chief goals of using this approach are to save personnel time and increase the level of
satisfaction for all users. The users for our system include students, faculty, and the capstone
program.

The Team Formation Problem

The Franklin W. Olin College of Engineering requires all students to complete a two-semester,



senior-year, engineering capstone project course. This course is the culminating engineering
design experience for our students, and strives to provide real-world engineering problems and
experiences from paying industry sponsors. Each year, approximately 75 students participate
in 13-15 projects, and it is the job of the capstone program to try and best assign these
students to the projects.

Our capstone program began in the fall of 2005, and is heavily modeled upon the Harvey
Mudd Clinic program.

Successful team formation requires knowledge of project requirements and student skills and
preferences. Students are expected to work with external sponsors as well as faculty and
each other, and they are required to manage a significant budget, so we need to consider
“soft” skills like leadership, teamwork and communication along with more technical skills.

Many of the projects are multi-disciplinary. Most include mechanical, electrical and/or soft-
ware components, and many involve areas such as industrial design, environmental studies,
ethnographic studies, and business/entrepreneurship.

Effective team formation is important for the short- and long-term goals of the program.
In the short term, if students feel that the allocation conforms to their preferences and
interests, they are likely to have higher morale and motivation. In the long term, we expect
a good match between projects and student skills to yield good project outcomes, which is
important for sustaining external support for the program.

The data we use to form teams comes from several sources, including student transcripts and
project descriptions from external sponsors. Information about student preferences comes
from a survey we administer at the beginning of the academic year. Students are given a
short description and presentation on each project. They have a few days to ask questions,
investigate the projects and the sponsors, and to talk to each other. Then we ask them to
complete an online survey.

The survey asks students to score each project on a scale from 1-5, where 1 indicates no
interest, 5 indicates strong interest, and 3 indicates that the student would be willing, but
not necessarily happy, to work on a project.

Students are also allowed to identify up to two other students they do not want to work with.
To encourage students to use this option sparingly, we ask them to name another student
only if they believe that being on the same team with that student would be detrimental to
the success of the project.

We have used almost the same survey instrument for all three years of the program. The
rationale for this simple preference survey is that students will self-select projects that they
want to participate in, and have the capability to make an impact on.

From student transcripts, we have each student’s major, courses taken and grades, and grade
point average (GPA).



Some issues arise in using this data set in an automated fashion. Some projects are more
popular than others; projects that attract few students constrain the space of feasible allo-
cations. Also, there are usually a few students who are identified as an anti-preference by a
disproportionate number of classmates. Assigning these students to a project also constrains
the space of solutions. Nevertheless, in the three years of the program, it has always been
possible to staff each project with interested students without violating any anti-preferences.

An important source of soft data is the knowledge of the people participating in the allocation
process. The people “in the room” for our process include the capstone faculty, the Dean
of Students, the Dean of Faculty, and the capstone program director. From classes and
other interactions, the faculty have personal knowledge about each student. The Dean of
Students often knows about student life histories and interpersonal relationships. The Dean
of Faculty provides oversight of the process from the perspective of educational outcomes.
The Program Director provides oversight from a programmatic perspective.

The next section explains how we use data from the survey and other sources to allocate
students to projects.

A Semi-Automated Approach

Motivation

In a fully-automated process, we would formulate allocation as an optimization problem and
use a program to search for an optimal solution, where “optimal” means that the solution
satisfies all constraints (like the number of students on each project) while minimizing a cost,
like violations of student preferences, or maximizing a complementary benefit.

There are several problems with this approach:

• It requires all relevant information to be encoded in a way that can be manipulated
by the program. This is easy with “hard” data, like the results of the student survey,
but impossible with “soft” data, like our knowledge of students’ personalities.

• It requires all constraints and costs to be quantified. Again, this is easy for some of our
goals, like assigning students to projects they are interested in, but either complicated
or impossible for other goals, like assuring an appropriate mix of skills for each project.

• It requires all tradeoffs between conflicting goals to be quantified. There is no general
procedure for making these kinds of tradeoffs; it is only possible to consider, and reach
a consensus about, specific cases.

• It requires all participants to trust the system and believe that the outcome is optimal.
This is only possible if the process gives participants a mental model of the space of
possible solutions.

The faculty and students involved in the capstone have different and sometimes conflicting
goals and values. There is no “optimal” allocation that will satisfy everyone. What is needed



is an allocation process that assures everyone involved that the outcome is an appropriate
compromise that is as good as possible.

Our Approach

To achieve this goal, we propose a semi-automated approach that tries to combine the
efficiency of an automated search with the user satisfaction of a human-centered approach.

Our approach iterates between two phases:

1. The first phase uses an automated search to find a pool of allocations that are good
candidates according to a coarse cost function.

2. In the second phase the capstone faculty evaluate proposed allocations and either
accept one of them or adjust the parameters of the automated search and generate a
different set of candidates.

There are a number of advantages to this two-phase approach:

• It uses computers to do what computers do best, and humans to do what humans do
best.

• It takes advantage of both the hard data, which can be encoded and used during the
automated phase, and soft data, which may exist only in the heads of the users.

• It can deal with both hard constraints, which cannot be violated, and soft constraints,
which can be violated at a “cost.”

• It gives the users opportunities to fine tune the allocation to balance the needs of
students, faculty, and the program as a whole.

• It allows the users to discover and modify constraints and costs as the process goes
along.

• It helps the people involved understand what the space of possible solutions looks like
so that their expectations are calibrated appropriately.

Regarding this last point, we have observed that different people approach this kind of
problem with different mindsets. One classification divides people into “maximizers” and
“satisficers.” Satisficers generally try to find an acceptable solution; maximizers try to find
the optimal solution. The approach we are proposing can help avoid conflicts between these
mindsets.

For satisficers, the process takes significantly less time and produces a large number of high-
quality candidate solutions to choose from. For maximizers, the use of a computer algorithm



to search a very large space of solutions can alleviate the anxiety of a fully-human approach
by providing an overall view of the landscape of solutions. Also, starting with a small pool
of candidate solutions, maximizers can look for local optimizations until they are convinced
that no further improvements are possible.

Our implementation

The following is a more detailed description of the steps we followed.

• Automated search for feasible solutions: Using information from the survey of student
preferences, we use a greedy algorithm with local optimization to generate a large
number of good quality feasible solutions.

The automated search is guided by a cost function that assigns a score to each candidate
allocation. Undesirable features are assigned a “cost”; the total score for an allocation
is the sum of all costs.

Most constraints are enforced by assigning high costs for violations. For example,
understaffing or overstaffing a project costs 10000 points; in practice this means that
no solution with this feature will win, but the program can consider allocations that
violate this constraint as it moves from one local optimum to another.

Assigning a student to a project with a preference of 5 (“high level of interest and
strong match of skill”) is free; a preference of 4 costs 1 point; a preference of 3 costs 5
points; a preference of 2 costs 1000 points and a preference of 1 (“not interested, or no
match of skills”) costs 10000. An allocation that assigns a student to a project with
preference 2 or 1 is considered unacceptable, but can be used to move from one local
optimum to another. The program tries to avoid assigning students to projects with
preference 3, but in our experience so far, it has not been possible to avoid putting a
small number of students in that position.

If two students who conflict are assigned to the same project, that costs 100 points.
This weight reflects our desire to accommodate anti-preferences almost absolutely while
still considering that violating an anti-preference might allow the program to explore
a part of the solution space that yields a better global allocation.

The program that generates solutions works in three phases:

1. During the first phase, the program uses one of two probabilistic greedy algo-
rithms to generate an initial allocation. One algorithm enumerates the students
in random order and assigns each student to the available project with the high-
est preference. The other algorithm enumerates the projects in random order and
chooses the student with the highest preference for the project, repeating until all
students are allocated.

Because the algorithms enumerate the students and projects in random order,
and break ties at random, they generate different initial allocations each time
they run.



Both algorithms generate allocations with an acceptable number of students on
each project, and they tend to assign students to projects with high preference,
but they make no attempt to avoid violating anti-preferences.

2. In the second stage, the program considers all possible trades (swapping two
students) and moves (moving a student from one project to another) in random
order. Any trade or move that improves the overall score for the allocation is
accepted.

Stage 2 is repeated until there are no moves or trades that improve the allocation.

3. In the third stage, the program identifies the students who are most unhappy,
chooses one at random, and takes “desperate measures” to make the student
happy, even at the cost of violating an anti-preference or making another student
unhappy. The effect is to move the allocation out of a local optimum; the program
then repeats Stage 2 to find the new local optimum.

Stage 3 is repeated as long as it continues to find improvements. If a desperate
measure fails to find a new optimum, the program discards the allocation and
starts again with Stage 1.

As the program runs, it records all solutions with a global cost below a certain thresh-
old. The longer the program runs, the more low-cost solutions it finds. In our expe-
rience, the program tends to find a few good solutions in 10-20 minutes; after a few
hours it seems unlikely to do any better. Of course, we are making no effort to find a
true optimum, and we wouldn’t know if we found it.

Among the lowest-cost solutions, there tend to be repeating patterns: one project
might be assigned the same team in many solutions, or a set of students might tend
to be on the same team.

After the program has run for a while, we print about 20 of the best solutions and
bring them to the next stage.

• Scoring candidate solutions: Capstone faculty evaluate possible allocations. If an
acceptable solution emerges at this stage, the process can stop, but it is likely that
additional constraints will be identified.

We distribute hardcopies of the top-20 allocations to the capstone faculty for evalua-
tion. Faculty advisers tend to evaluate their own teams, taking into account factors
like the major, skillset and GPA of the students as well as personal information based
on prior experience. For each allocation, faculty assign a score to the proposed team
on a 5-point scale: 5 indicates a very strong team, 4 is strong, 3 is acceptable but
borderline, 2 is unacceptable but possibly reparable, and 1 is unacceptable.

During this process, faculty identify recurring patterns and problems. New constraints
might be identified that eliminate some allocations from consideration.

This stage can be decentralized; that is, the faculty involved don’t have to meet to
evaluate the candidate allocations. The faculty in charge of the allocation process
(the authors of this paper) can aggregate responses from faculty advisers and other
participants.



• Generation of more solutions: If additional constraints are identified, they can be
enforced automatically by modifying the search code, or candidate solutions can be
filtered by hand.

We run the search program again with new constraints and select a new set of candidate
allocations.

• Selection of best candidates: In a second round of scoring, capstone faculty identify a
small number of candidates allocations that are either acceptable or nearly acceptable.

During this stage, for the first time, faculty are all in the same room. By this time, they
have a sense of what the search space looks like and an idea of how good an allocation
is likely to be found. We have identified allocation features that are “showstoppers”
and generated solutions that avoid obvious problems.

• Search for local optimizations: Capstone faculty are divided into teams; each team is
given a candidate allocation to work with. For a given allocation there is often a par-
ticular problem they are asked to resolve. Their search is facilitated by automatically-
generated tables of possible moves and trades. This stage ends when all teams decide
that they cannot find additional improvements.

The teams present their final allocations to the group. The faculty discuss the features
of the proposed allocations with the goal of choosing one by consensus.

Evaluation

Our capstone program started in the 2005-6 academic year so we are offering it for the third
time this year.

In the first two years we used a computer program to collate and print the data from the
survey, but the allocation was performed manually by capstone faculty. We implemented
the approach described in this paper for the first time this year.

The following sections describe our experiences in the first two years.

Year 1

In the inaugural year, the allocation process was completely manual. Without significant
forethought we implemented a greedy algorithm based on student preferences, and then
searched for local optimizations.

With a single piece of paper representing the survey results for each student, we allocated
each student to the project with the highest score. At the end of this round, many projects
were understaffed and a few were overstaffed.

Next we started an ad-hoc parallel search for better solutions. This often resulted in faculty
making local trades between projects to form teams of 4-5 students per project. Other times
faculty would ask the entire room for a student that met certain criteria, such as ranking their



project highly and having a particular major. Conflict resolution was done by individual
faculty.

This approach yielded a relatively good allocation of students: of approximately 66 students,
all but one was placed on a team they ranked 5 or 4 (highest and second highest). The
remaining student was placed on a team ranked 3. However, the allocation process took a
long time—approximately 96 person hours (8 hours by 12 people). The process was also
prone to human error; at one point we thought we were done, then discovered that an anti-
preference was accidentally violated. It took another 90 minutes to find a set of trades and
moves that solved this problem.

At the end of the allocation, the faculty overwhelmingly agreed that a better process was
needed.

Year 2

In the second year of the program, in an effort to provide more global guidance and a
structured method for allocating students, we implemented a process similar to professional
sports draft.

In round-robin fashion, each faculty member chose the best student for their team. This
process, while seemingly appropriate, was quickly found to be flawed.

After a few rounds we reached an incomplete allocation where many projects were under-
staffed, but the remaining students could not be assigned to the understaffed projects without
violating student preferences.

The draft algorithm fails because it solves the easy part of the problem first and leaves the
hard part for last. This violates a basic heuristic of allocation: “Pack the big rocks first.”

Students with good academic records, interest in several projects, and few anti-preferences
are “small rocks;” in a draft algorithm, they are likely to be chosen first. Students with
weaker records, interest in few projects, or more anti-preferences are “big rocks.” If they are
left until the end, there will be nowhere for them to go.

To make things worse, this process puts the faculty in a competitive mindset, with each one
trying to select the best teams for their projects. This makes trading more difficult.

After a few rounds, we were stuck in a locally-optimal solution that was far from globally
optimal. There were few small, local changes that made things better; we needed to make
big, non-local moves to get to another part of the solution space.

But in the competitive atmosphere of a draft algorithm, faculty are less likely to accept
trades that involve giving up a “good” student (greedily selected early in the process) for a
weaker student (left until the end). This problem is compounded because in the early rounds,
faculty associated with a popular project are able to assemble a “dream team,” which raises



their expectations unreasonably.

The result was a qualitatively worse solution than the previous year. Eight students were
placed on a project they ranked 3 (compared to 1 in the previous year). The process took
as long or longer (about 8 hours) and seemed more frustrating.

We left the room with the feeling that there were better solutions we could not reach. This
feeling was confirmed when we developed the algorithm proposed here; using the data from
Year 2 for development and testing, we were quickly able to find solutions that allocated
only 3 students to projects ranked 3. Faculty who evaluated these solutions agreed that they
were qualitatively better than the allocation we generated manually.

From this experience, it was clear that we needed to refine the process and introduce some
degree of automation.

Year 3

For the third year, the authors prepared the approach detailed in the previous section.

The process took much less time—fewer than 40 person hours. Capstone faculty had an
initial one hour meeting to perform the parallel scoring, then met again after new candidate
solutions were produced to determine the final allocation. The number of person-hours is
still large, but the process was perceived as less stressful and more satisfying.

More importantly, the allocation we generated was met with high satisfaction from both
faculty and students. Almost all students were assigned to projects they ranked 5 or 4; only
one was assigned to a project ranked 3.

Exportability

The authors expect this approach to be useful in other contexts where assigning students to
teams is necessary. In exporting this approach, we must take into account scalability. Our
program is small—we assign about 75 students to about 15 teams—and our process depends
on the detailed familiarity of the faculty with the students.

If the ratio of students to faculty were much larger, the first phase of manual optimization
might be less valuable for improving solutions, because the faculty would have less “soft”
data about students. But this phase might still be helpful for giving the faculty an overview
of the space of possible solutions, which makes it easier to achieve consensus and the feeling
that the chosen solution is about as good as possible.

If the number of projects were much larger, the second phase of manual optimization might
be less effective because of the increased number of possible moves and trades. For example,
in our process, 10 faculty are divided into 3 teams, each attempting to optimize a candidate
allocation of 75 students onto 15 teams. If the number of projects, students and faculty were
much larger, it would be difficult for the teams to find local improvements.



One possible solution would be to introduce hierarchy into the human optimization of candi-
date allocations. Instead of groups of faculty assessing all teams, one could assign mechanical
engineering projects to mechanical engineering faculty to optimize. However, this would re-
strict the faculty to moving students between a subset of teams, and might not work as
well for multidisciplinary students and projects. The resulting solutions may then be less
globally optimal, as it would be difficult for any group of faculty to have a global view and
understanding of the full allocation.

In either case, scaling the problem size up makes the use of a semi-automated system more
attractive. The use of a faculty-driven parallel search process (as in Year 1) becomes more
difficult as the size of the problem increases. The use of a draft model (as in Year 2) also
becomes more difficult as it gets harder to find, and get faculty to accept, the big moves
that are necessary, toward the end of the process, to move from a local optimum to a more
globally optimal solution.

Conclusions

The authors present a semi-automated approach to allocating students onto project teams
for a senior capstone experience. The allocation is a high-stakes endeavor for all constituents,
as increased student agency and happiness can lead to strong motivation and a successful
project. Our approach is novel as it selectively automates parts of the process while keeping
the human operators in the optimization loop at appropriate times. Using this approach,
we have demonstrated initial success not only in reducing the time required to perform the
allocation, but also improving the quality of the allocation.


